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FOREWORD

This report entitled "Development of Response Models for the Earth Radiation
Budget Experiment (ERBE) Sensors" consists of the following four parts.

This is Part I, NASA CR-178292, entitled "Dynamic Models and Computer
Simulations for the ERBE Nonscanner, Scanner and Solar Monitor Sensors".

Part II, NASA CR-178293, is entitled "Analysis of the ERBE Integrating
Sphere Ground Calibration".

Part III, NASA CR-178294, is entitled "ERBE Scanner Measurement Accuracy
Analysis Due to Reduced Housekeeping Data".

Part IV, NASA CR-178295, is entitled "Preliminary Nonscanner Models and

Count Conversion Algorithms'.
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1. INTRODUCTION

The radiometric measurement system for the Earth Radiation Budget Experi-
ment (ERBE) is designed to measure the earth's radiation fluxes which result
from the earth and its atmosphere's emmitted energy as well as from reflected
energy, i.e., the earth's albedo. A general overview of the concept behind the
three-satellite ERBE radiometric system and its instruments has been described
in many internal NASA documents, such as the Science Team Minutes and Contractor
Status Reports, as well as in journal publications, (e.g., Ref. 1).

The radiometer package on each ERBE satellite consists of eight instruments
distinguished by their mode of operation, field-of-view and spectral response.
Four of the eight instruments are nonscanner (NS) type radiometers, two with
a Medium Field-of-View (MFOV) and two a Wide Field-of-View (WFOV). Two of the
nonscanner radiometers, one MFOV and one WFOV, have a suprasil filter which
eliminates the instrument's response to longwave radiative effects so that they
only remain sensitive to shortwave radiative effects. Shortwave (SW) radiative
effects are defined here as having wavelengths between 0.2 and 5 pm and long-
wave radiative effects as having wavelengths between 5 and 50 pm. Since radio-
meters without filters measure total radiation, they are designated "Total" (T).
The four nonscanner radiometers are therefore the Medium Field-of-View Total
(MFOVT), Medium Field-of-View Shortwave (MFOVSW), Wide Field-of-View Total
(WFOVT) and Wide Field-of-View Shortwave (WFOVSW). Three of the remaining in-
struments or "channels" are Narrow Field-of-View (NFOV) scanning radiometers,
two of which have filters. One scanner radiometer has a filter which eliminates
longwave radiative effects and another has a filter which eliminates shortwave
radiative effects. Hence the three scanner radiometers are the Narrow Field-of-

View Shortwave (NFOVSW), the Narrow Field-of-View Longwave (NFOVLW) and the



Narrow Field-of-View Total (NFOVT). The eighth instrument in the ERBE radio-
metric package is the solar monitor radiometer.

After the ERBE radiometers perform their earth, space and/or sun view and
calibration measurements, the measurement results undergo an analog-to-digital
(A/D) conversion and the data now in counts is transmitted to the earth through
the spacecraft telemetry system. Counts for the nonscanners are measured
every 0.8 seconds. Heat sink temperatures are read every 8 seconds and other
housekeeping (HK) temperatures every 16 seconds. Therefore, in 16 seconds
the data record for one nonscanner consists of 20 radiometric count readings,

2 heat sink temperature readings and 1 reading for each of the other HK

temperatures.

The scanners perform a measurement cycle once cvely « seconds. buring a
normal, earth-viewing scan each scanner performs 8 space-look measurements, 62
earth-view measurements and 4 calibration measurements. The Longwave and Total
NFOV scanners utilize the Internal Blackbody (IBB) for calibration measurements,
whereas the Shortwave NFOV scanner utilizes the Shortwave Internal Calibration
Source (SWICS). During a Mirror Attenuator Mosaic (MAM) scan cycle, the NFOVT
and NFOVSW scanners measure solar flux performing 8 space-look measurements,

46 MAM measurements and 4 calibration measurements. Housekeeping (HK) data is
sampled once per scan.

The solar monitor uses the same type of Active Cavity Radiometer (ACR) that
is used by the nonscanners. The three major differences between these ACR's
are as follows:

a) the solar monitor has a shutter to cut off the solar flux every

32 seconds,

b) the configuration of the solar monitor housing is totally different

and



¢) the solar monitor has no heat sink heater.

Solar Monitor count measurements are made every 0.033 seconds and HK measurements
are made every 4 seconds.

The radiometric instruments described above will have inherently different
behavior and responses to arbitrary input signals since no instrument can be
exactly duplicated or subjected to exactly the same calibration or operating
environment. Even when viewing the problems of sensor performance from this
macrosc0pic point of view, there are many things that have to be dealt with and
accounted for. For example, environmental contamination and aging effects in-
fluence the material degradation of the sensors. Sensor behavior may also be
questioned when the thermal load and leakage exceed the design level. One ex-
ample of abnormal thermal load is in the sun-blip case, where the sensor is
subjected to a sunrise and sunset during its orbit.

In attempting to account for such problems found in the sensor's radiometric
performance and capability, it is therefore necessary to develop a radiometer
sensor model. A sensor model should describe both a transient and steady-state
sensor response for a given radiative input. It must provide sufficiently simple
analytical expressions for parameters of particular interest and describe the
model's behavior, e.g., the model's sensitivity to changes in the modeling assump-
tions. The model must also be able to incorporate changes resulting from in-
strument design requirements during its construction as well as instrument aging,
i.e., sensor material degradation and unexpected thermal load and leakage during
its long-term orbital operation. The products obtained from the sensor model and
simulation must be in a form that is useful to the users. The sensors' response
must therefore be validated by updating model parameters and converted into data

with useful engineering units.



This report entitled 'Development of Response Models for the Earth Radiation
Budget Experiment (ERBE) Sensors" consists of the following four parts.

pPart I, NASA CR-178292, is entitled "Dynamic Models and Computer Simulations
for the ERBE Nonscanner, Scanner and Solar Monitor Sensors'".

pPart II, NASA CR-178293, is entitled "Analysis of the ERBE Integrating
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Part III, NASA CR-178294, is entitled "ERBE Scanner Measurement Accuracy

Analysis Due to Reduced Housekeeping Data'.

Part IV, NASA CR-178295, is entitled "Preliminary Nonscanner Models and

Count Conversion Algorithms'.



2. SENSOR MODELING

The following ERBE radiometer sensor models were developed by Information &
Control Systems, Incorporated (ICS) to consider thermal and radiative exchange
effects. These models consider the surface specularity and spectral dependence
of a filter as well as the thermal conductive and radiative interactions among
the nodes in an enclosure of a radiometer. An enclosure is a domain in which
an instrument's geometry is divided into appropriate elements. These enclosures
in an instrument's model are set up using real or fictitious boundaries to ef-
fectively alleviate the computational load for defining configuration factors.
The instrument's model also includes the electronic thermal control sytems which
are coupled with the energy equations. A general form of the energy equations
can be uséd for all the sensors, despite differences in the mode of operation,
field-of-view and spectral response, as long as the radiative enclosures and
thermal nodes in the sytem's sensor configuration comply with the first law of
thermodynamics.

A sensor model can be tested and evaluated by comparing its behavior with
the actual results obtained from the sensor's ground and inflight calibrations.
The sensor model includes additional uncertainty since it incorporates outputs
from the calibration source models. Once the sensor and calibration source models
prodnce sufficiently accurate results, they can be used to define the parameters
for the count conversion procedure.

The characteristics of a sensor's simulation model are such that it has
a dynamic response to the time dependence of an arbitrary input signal. The
model also has a spectral response which is due to the spectral dependence of
a sensor's filter and its exposed surfaces. Thermal effects for the model can

be determined from the conductive and radiative properties of the sensor. The



model's measurement error can therefore be determined after its time response,
spectral response and thermal effects have been obtained. The model can simu-
late the sensor's response to the temporal incident radiation received through
the field-of-view limiter in both the transient and steady-states.

The purpose of modeling ‘and simulating is therefore 1) to understand sensor
performance, 2) to improve measurement accuracy by updating the model parameters
and 3) to provide appropriate constants necessary for the count conversion

algorithms.

2.1 General Description of the ERBE Sensor Models

2.1.1 Models

A gensor's geometry can be appropriately divided by considering its ther-
mal and radiative interactions as a consequence of its design. Figures 1
through 6 provide diagrams of how sensor elements have been geometrically
partitioned for the nonscanner, scanner and solar monitor. Each element has
a time resonse to the energy flowing to and from its neighboring elements.

One might assume that maximizing the number of sensor nodes would maximize
the accuracy of the model's prediction of energy from a target source. However,
increasing the number of nodes would introduce additional sources of error
since the large set of equations required would incorporate additional para-
meter approximations. Such equation approximations would need to be made to
calculate constants such as thermal resistance, exchange factors and surface
spectral and specular characteristics. There is an accuracy tradeoff between
increasing the number of nodes and approximating the sensor's size, material

properties, geometry, enclosure surface characteristics, temporal incident
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energy flux intensity and electronic control system. If the temperature
gradients within a node and between nodes are small enough, a model approx-
imation with only a few nodes would not jeopardize the accuracy required to
perform the parameter estimates and error anmalysis. Factors which would de-
crease these temperature gradients within a sensor include uniform thermal
properties, simple and symmetrical geometry, uniformity in directional and
spectral properties of an enclosure surface and small temporal change in in-
cident energy flux.

A nonscanner sensor has 9 nodes if it has a suprasil filter dome (Figures
2 and 4) and 8 nodes if it does not (Figures 1 and 3). The sensor's geometry
is divided into nodesbased on material homogeneity, overall sensor size, thermal
conductivity of materials, thermal resistance between materials and surface
radiative properties. The 9 nodes of the MFOVSW model (Figure 2) are there-
fore, as numbered: 1) the active cavity with a heating and sensor coil 2) the
copper heat sink with a heater, 3) the reference cavity with a sensor coil, 4)
the aluminum heat sink, which is partly covered by a heater, 5) the base plate
or substrate, 6) the field-of-view limiter, 7) the aluminum heat sink which
houses the reference cabity, which is partly covered by a heater, 8) the pre-
cision aperture and 9) the filter dome for shortwave channels.

Similarly, the scanner model (Figure 5) is divided into 12 nodes for the
total channel, 13 nodes for the longwave channel and 14 nodes for the short-
wave channel. The solar monitor is divided into 19 nodes (Figure 6).

In addition to their nodes, these sensor models incorporate fictitious sur-
faces to define and simplify enclosure geometries. Since the specular prop-
erty of each surface in an enclosure is taken into consideration, the simple
geometry facilitates the exchange factor calculation, alleviating the compu-

tational work load for determining the exchange factors. A net radiation

13




analysis is performed for each enclosure which has surfaces with specular and
spectral characteristics. This analysis appropriately deals with any partial
specular and diffuse characteristics of an enclosure surface (Ref. 2). The
model can also easily include transient response and thermal conduction. This
net radiation method utilizes the waveband approximation to an enclosure's

surface which has a specific spectral dependence.

2.1.2 Thermal Conductive and Radiative Interactions

A volumetrically defined node, or control volume, complies with the first

law of thermodynamics as in the following equation

de

ae _ pR1]
dt Ac qc + Ar ¢ (1

The first and second terms of the right hand side of Equation 1 represent the
conductive transfer through contacting surfaces and radiative transfer from
surrounding elements of an enclosure, respectively. The rate of energy change
in a single node, therefore, depends on the difference between the ingoing and
outgoing energy fluxes through a control surface or "boundary". This rate of
energy gain or loss is composed of the rate of energy stored in a node as well

as the rate of energy source or sink as indicated in the following equation

de _ dT _ .
FrRAAFT: (2)

where V is the volume of a node, Yy the density of a node, C the specific heat,
T the temperature and Q the rate of energy, oOT heat, at a source Or sink.

Combining Equations 1 and 2 yields

— = q" + Q 3
vyC dt AL q. t AL ¢ (3)
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Equation 3 represents an energy balance in a single node. In the geometrically

partitioned model, the conduction term can be written in the following form
. T, - Ti
" = J 4
(Ac qC)i—j R, (4)

where Ai—j is the contacting area of i element to j element, é: the heat flux
by conduction through the contacting area between i and j elements. Ri-j is the
thermal resistance between i and j elements. The thermal resistance between nodes

is defined by the following realationship

Li i 1 L,1 i
R, ., = - + + — (5)
i— A A k., A
e T T S T o I B o
where L. . is the distance from the thermal center of a node to the center of the

i-3
contacting surface, Kk the thermal conductivity and h the thermal conductance of

the contact between i and j elements. The thermal center is normally coincident
with the geometrical center i{f a node material has homogeneous and isotropic ther-
mal properties. The contact resistance (1/hA) is mainly dependent on the surface
roughness and the contacting pressure. The well-machined surface has a regular
and uniform roughness. In such a case, the contact resistance can be determined
by the following empirical relations (Ref. 3) as functions of the surface rough-

ness and the thermal conductivities of two contacting materials.

i o
& Fc/// % //: '
AN \\\\\\ \\\\\\\

Figure 7. A Simple Thermal Contact Resistance Model
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Let surfaces contact each other with surface roughness 61 and 52 and thermal

conductivities kl and kz, respectively. Assume the contacting area per periodic
2

contact is ma . Then the number of contacts per unit area n = ;iz and the

total number of contacts for two surfaces with total contacting area A is —év .

Ta<
Conductance can therefore be calculated:
k 2
= S € n

h=-3 1-¢2]\le+n (6)
where

1 1 1 1

—_—= = —— 4 —

ks 2 k1 k2

§ = 61 + 62 (= 261 or 262)

n = 2.136 Yo , where n is a parameter for roughness

€ = a‘i < where ¢ is the half-width of the surface cavity
n =-—£2 = number of contacts per unit area
Ta
kl,k2 = thermal conductivity of nodes 1 and 2
61,62 = root mean square surfacce roughness of nodes 1 and 2

A = total node interface area

a = radius of a contacting point

For the radiative interchanges in an enclosure including both specular
and diffuse surfaces, a radiative property such as a reflectance, p, can be
divided into a diffuse and a specular component as well as shortwave and long-

wave bands.

That is, for shortwave bands:

16



d S
Ps = Ps + Ps

and for longwave bands:

d s
Pp = Py TPy

where the superscripts, d and s, signify the diffuse and specular, and the sub-
scripts the short and longwave bands. For a semi-transparent or an absorbing
medium, the radiative properties have the following relationship among the

reflectance p, emittance or absorptance ¢, and transmittance, T.
€ +p_ +1_=1 for shortwave
s s s

+ Py + T, =1 for longwave

€2 2

The energy fluxes incident upon and leaving a typical semi-transparent

surface of the enclosure are described in Figure 8. Consider the ith inside

surface area, Ai’ of the enclosure which neighbors with other enclosures. The
{ and M? are the rates of incoming and outgoing radiant energy

while considering diffuse and specular reflectance of the surface per unit in-

quantities E

side area, respectively. The quantity Mi does not include the rate of trans-
mitted incident radiant energy from the other neighboring enclosures. The
quantity Ei is the rate of incoming radiant energy to the non-opaque boundary
surface from the neighboring enclosure. The quanitity ¢i is the energy flux
supplied by some external means to the surface to make up for the net radiative

loss and thereby maintain the specified surface temperature. A heat balance

at the surface provides the relation
o =By - My @)

A second equation results from the fact that the energy flux leaving the

17
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surface having diffuse and specular characteristics is composed of directly

emitted plus reflected energy. This gives

_ 4 d s
=€, 0T +piEi+°iEi (8)

*
Mf=€, 07y

Equation 8 is called an opaque radiosity. The total radiosity, considering
the rate of transmitted radiant energy which is originally coming from the
neighboring enclosure, is composed of the opaque radiosity M; plus the energy

flux transmitted through the surface with transmissivity, Ti' This gives

Mi=M§+‘ri Ei (9)

The diffuse total radiosity considering only a diffuse factor in Eq. 9
and excluding the specular reflection term is described as the following

d 4 d
My =€ oT, +p; E

4 ) + T, Ei : (10)

i

The contribution to Ei from the other diffusely reflecting surfaces in
an enclosure can be represented in accordance with the relationship defined by
the configuration factors in an enclosure with diffuse surfaces, except that

now the configuration factors are replaced by the exchange factors, or

= d
E. =23 F,, M, 11
i j ij 3 an

where ﬁij is the exchange factor defined between i element and j element through
j's images on the element i. Equations 7 through 11 can be represensted by the
short and longwaves, respectively.

To obtain the heat balance (Eq. 7) as functions of surface temperatures in
an enclosure and the irradiance, or incident radiation, from the target source at
the field-of-view limiter of the radiometer models, first Eq. 9 is substituted

into Eq. 7, yielding
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d s
¢, = (L -py - Py Eg =&y Q -1 By

in which pi + pi = pi where pi’is the total reflectance of the surface and

Q=0 T“.

Thus
0, = (L-p) By =€ Q -1, E, 12)

Then, combining Egs. 10 and 11 and rearranging, yields the following equation

_ o d,-1 =
E, = § (Gij iy py) Fij(ej Qj + 1y Ej). (13)

For brevity, we introduce new variables from Eq. 13, that is

- = d-lz

Aij (6ij Fij pj) Fij ej. (14)
- d.-1 =

cij = (Gij - Fij pj) Fij rj. (15)

Thus, Eq. 12 with the above constants can be written

Ei = § Aij Qj + Cij Ej (16)

Equation 16 has an important role to couple an enclosure with the neighboring
enclosures through a semi-transparent or transparent boundary surface.

The above relation (Eq. 16) can be used for the cases when an enclosure
is partly or totally surrounded by the neighboring enclosures and also when
part or all of the surfaces of the enclosure are non-opaque, i.e., semi-trans-
parent or transparent. To include all the configurations of the enclosures and
to couple them together through interactive boundary surfaces, the above rela-

tion (Eq. 16) can be generalized in the matrix form, that is,

E=AQ+CE (17)

20
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where A and C denote Eqs. 14 and 15, respectively. The bars above the notation
A and C are to distinguish Eq. 14 and 15 from the notation for the area and

the conduction constant of governing equation to be discussed in the Section 2.1.4.

2.1.3 Coupling Enclosures

In the above Eq. 17, E can be directly related to E by defining the geo-
metrical coupling factor. The relationship between E and E is apparently de-
pendent on the geometrical formation of enclosures through the interactive
(non-opaque) surfaces as in the following example. Consider the system shown
in Fig. 9 which consists of nine enclosures and interacts at the boundaries with

the incident radiation from the environment. The incoming radiation E can be

written
-
g <[l (18)
o2
-3
£

where the superscript m denotes the number of enclosures in the prescribed

system. Each enclosure of the system has a certain number of interacting sur-
. . . . t

faces. In such a case, the incident radiation upon the surfaces of the i h

enclosure can be described by

15:1=r:1 and 1 £i<m (19)
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where the subscript n denotes the number of a surface in an enclosure of the
system. As shown in Fig. 9, Et and Eé define the incident radiation on an in-
teractive boundary surface between the first and second enclosures. The sub-
scripts 4 and 2 here, respectively denote the surface numbers as seen or counted
from each enclosure. These surfaces designated by 4 and 2 in the enclosure 1 and
2, respectively, are supposed to be the interactive boundary surface co-owned by
enclosures 1 and 2. On the contrary, incident radiation E coming from the op-
posite, or neighboring, enclosure upon the boundary surface is defined by Eg and
Ei, respectively. Accordingly, observing enclosures 1 and 2 with respect to the
incident radiation on the interactive boundary surface, we find the following
coincidences:

1
4

E, = E% and E, = Ei . (20)

Equation 20 tells us that the incident radiation Ez, upon the interactive
boundary surface of the first enclosure is virtually regarded as the opposite of
incident radiation Eg, on the back surface of the same boundary, whether the
second enclosure is considered to be formulated or vice versa. This coincidence
on each interactive boundary surface is uniquely determined by the formation
of the enclosure in a given system.

To generalize the above relationship, Eq. 20, for the enclosure which
has interactive boundaries and also system boundaries, let us consider the
first enclosure shown in Figure 9. The first enclosure has not only two inter-
active boundaries at 3rd and 4th surfaces, but also two system boundaries at

1st and 2nd surfaces (Fig. 9). Extending the above relationship (Eq. 20) to

include the system boundaries and describing it in a matrix form, we have
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- - - -
000 0] 0o 00 O] - 1 00 0
, (0000}, 0000} , 0100 .
E" = ES + E + | s (21)
0 000 1 00 0° 0 000
(01 0 0 0 00 0] [0 0 0 0]

Likewise, the other enclosures have the same expression as depicted for the
first enclosure. Thus, introducing a new variable-D for the enclosure coupling

factor, the relationship (Eq. 21) can be written
E = DE + FS (22)

where D is a matrix representing the enclosure coupling factors through the
interactive boundaries, F is a matrix representing the system boundary conditions
imposed by surroundings, and S is a column vector of the heat fluxes arriving

at the system‘boundaries. Now substituting Eq. 22 into Eq. 17 and collecting

the same variables, we have, with I being an Identity matrix
RS G a1
E= (I - CD)  AQ+ (I- CD) CFS (23)

Equation 23 illustrates that the incident radiation E upon a surface of the
enclosure accounts for all the effects of radiation from the surfaces with
different temperatures not only in its own enclosure, but also in neighboring

enclosures, and the heat flux at the system boundaries.

The energy balance at a node or a surface in the enclosure due to the
incident radiation is then described by inserting Eqs. 22 and 23 into Eq. 12.
Then, by eliminating E and £ from Eq. 12, the radiative energy balance is
obtained as only functions of the temperatures of enclosure surfaces and the
jrradiance from the target source or amny other kinds of heat flux which inter-

acts with the system boundaries. That is,
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>1

e ]

+[(1-p-rn)(1—én)’lé-r FS] (24)

¢ = [(1 - - )1 -2t

When the radiative energy balance described by Eq. 24 is applied to the
enclosures obtained by properly dividing the geometry of the system, the

number of the radiative energy balance equations, ¢, obtained from Eq. 24 is
more than the number of nodal points because consideration is given twice to
the interactive boundary between two enclosures. Accordingly, in the multiple-
enclosure system the radiative energy balance is calculated for each surface

of enclosures. Then, for the overlapped boundary surface, the radiative energy
balances from both enclosures are added together. The radiative energy balance
(Eq. 24)is then plugged into the energy equation (Eq. 3) of the system.

The enclosure coupling technique developed here has many potential
applications and advantages over the conventional methods currently used.

Among the advantages, this technique can be used for any kind of geometry
by only setting up enclosures via dividing the geometry and defining the D
and F matrices in Eq. 22. The enclosure space with irregular geometry can be
properly divided into many smaller regular sub-spaces to adopt the enclosure
coupling technique. For an enclosure with complicated geometry, the division
of the space geometry into well-defined sub-spaces facilitates the computation
of the configuration factor or the exchange factor, especially for an enclosure
with specular surfaces which is totally dependent on _the geometry.

This technique can also be extended to treat radiation interactions in-
cluding the scattering and absorption with optically thin or thick participating
media in an enclosure. Even though there are temperature and density gradients
in participating media, by dividing the enclosure space into sub-spaces which

are small enough to assume the sub-spaces to be isothermal and isotropic, the
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enclosure theory can be directly applied for the system without loss of gener-
ality.
In short, the advantages and potential applications of the cnclosure coupling
technique are listed below.
ADVANTAGES :
1. It minimizes the effort required to define the exchange factors
among the surfaces in an enclosure with complex geometry, and so

may be able to decrease a degree of possible approximation in the

computation of e¢xchange factors.

2. It may take the wavelength characteristics of materials or participating

|

| media into account in a simple manner.

' 3. It can be easily coupled with the thermal model of the system so that

! the material and thermal properties are considered in the coupled

‘ dynamic system without approximations and assumptions such as those
in the boundary definitions.

4. It enables the system to deal with any imposed initial conditions

and prescribed boundary conditions.

5. It may enhance the accuracy in the computation of a geometrically
partitioned conductive and radiative model.

6. As a consequence, this technique can avoid the length of time for
computation and a cumbersome manipulation which is often revealed in

the other methods such as ray tracing or Monte Carlo methods.

APPLICATIONS:

1. It can be used for any enclosure geometry.
2. It can be used for either the enclosure with a vacuum space or the

enclosure with participating media (solid, liquid or gas).
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3. It can be applied to any optical system's anslyses and design regard-
less of the directional, spectral, and/or temperature dependences of
its enclosure spaces.

4. Applications of the enclosure coupling technique to optical systems

may vary from a typical radiometer to any waveguide system.

2.1.4 Governing Equation

The governing equation which describes the performance of a radiometer tha
has a dynamic response to an incoming radiance can be obtained by substituting
Eqs. 4 and 24 into Eq. 3 and collecting terms. Then we can separate the in-
coming radiation flux from the radiation balance term. The equation can be

written in a general form to describe the energy balance in a node as follows

"r=A'r+DT“+BE+BQ6+b+e (25)
where

ik

D=gﬁ£[(1-p— D)(I-ED)'li-e]

B=—Aﬁ![(1_\-p- D)(I - )" C -1 F]

B - A

b = a bias term

e = a noise term

R = the thermal resistance between nodes (see Eq. 5)

M = VYC

t
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A = the area for the radiative interaction

the node area covered by the heat sink heater

o
]

Equation 25 represents a general form that consists of a set of equations
for a multinode system. Considering only the thermal model for the nonscanner
total radiometer which is divided into 8 nodes, we have a set of 8 equations
which represent the energy balance in each node separately. The inclusion of the
electronic thermal control system equations will increase the total system by
the number of the transfer functions. The constants of Eq. 25 for the nonscanner,

the scanner. and the solar monitor are described in Appendices C, D, and E.

2.1.5 Flectronic Control System Model for the Nonscanner

The block diagramshown in Fig. 10 illustrates the nonscanner ACR control
system model. The control electronics transfer function is of the form (cf.
ERBE Instruments, Monthly Status Report - Vol. 1, Nov. 1980, unpublished)

(1,8 + 1) (1,5 + 1)
F.(s) = 1 2
E S(T3S + l)(TAS + 1)

(26)

To obtain the differential equations describing the electronics transfer

function, we define the state variables TlO’ Tll’ le, as follows

. R_(T) ]
T..= V_K - B + K. n (27)
10 B Xa K | E_(T) + R(T)) E E "E
- R4
Note BE R; + Ry is an input constant, where R3 and Ré are the bridge
resistances.
2 . _ . -
Ri(Tj) = Ai + BiTj + CiTj’ i=a, r; jJ 1,3 (28)
$ooe X T T, + T, (29)
11 Ty 11 10 1°10
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Substituting Eq. 27 into Eq. 29 gives

. 1 ( ) 1.'1 K K Rr(T3) 1 (3 )
T.. = — (-T,, + T + =V +—K_.n 0
11 13 11 10 13 ' B a E Ra('rl) + Rr(T3) 13 E E

. _ i_ _ .
12 =7, -Typ *+ Tpp *+ T2 T1o) (1
For full expression, substitute Tll in Eq. 30 intoEq. 31.

Note that le is now the output of the electronics, so that the voltage

output is

v="T,.+n (32)
To convert to counts, C, use the following relation:

C = Kcv = Kc le + Kc n_, Kc = 819.1 counts/volt.

The heat flow provided to the active cavity to maintain its temperaturec

at a constant level is given by

.2 2
Q =Ky =K T + 2K T

a a 12 Ny + Ka ni (33)

12

This expression for Ql brings to light the major effects that the noise
terms introduce into the operation of the radiometer. Note that due to the
use of square feedback, the linear noise terms acquire a gain of 2Ka le,
while a quadratic noise term (having non-zero mean) is introduced. Coils

which are wrapped around the active and reference cones generate heat and are

expressed by the following terms.

4. - v R,(T1) ,
3, B [Ry(IPH R_(Ty)]
é - v2 Rr(T3) .
3, B [Ra(Tl) +R_(T5)]
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To obtain the closed-loop system, the expression Eq. 33 is simply

substituted into the equation governing the active cavity temperature.

T, = A (T, -T)+LD, T +B E+ Yag2 ey
1A TR T P e TR F TR M,
: 2
- K n R (T.)
a_v 2 a1
+ +V y (34)
M) B [R,(T)) + R.(T3)]

The block diagram shown in Fig. 11 illustrates the non-scanner ACR heat
sink heater control system model.
The control electronics transfer function can be approximated in the

form

(T, s + 1)

_ H
Fup(s) = Ky s (35)

The, differential equations describing the heat sink heater controller can be

expressed as

T3 = KH13 Kpe Ty = T2) *+ Kyp 0y (36)
Ve = T3 * Ty Kg KH13 (Ty = Ty) + Ty Kyp 0y (37)
- 2

Q=K vy (38)

In Eq. 25 the heat source term, é, is substituted by Eq. 38 for the aluminum

and copper heat sinks.

2.1.6 Simulation of the Nonscanner Model

The simulation of the ERBE nonscanner sensors is divided into two major
parts; the first determines the coefficients of the system, the second solves

the systems over time and plots the results. Figure 12 is a flow diagram
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indicating file and program usage. The equation describing the change of temp-

erature in a given node at time i is

T(i) = AT(i) + DT"(i) + BE + B.Q + B n (39)

Q

Where A is the conductance coefficient matrix, D is the radiative coefficient
matrix, B is the irradiance source vector and BQ is a vector of coefficients
which describe heating contributions from the control system. T(i) represents
either the temperature change for a thermal node or a voltage change for an
electronic node. The general method of solution is a fourth order Runge-Kutta

algorithm, all of which is discussed in great detail in the following sections.

2.1.6.A Parameter and Coefficient Determination

The coefficient matrices and vectors are determined in the first program
in the sequence ERBEPRM. The data inputted to this is determined from material
specifications and engineering drawings supplied by the manufacturer. The code
is partitioned into 5 major sections, not including the program input/output.
The first of these is the subroutine "COMPUTA". This routine takes the heat
capacities and node to node thermal resistancesand returns the conductance
coefficient matrix. The program then enters the routine ADDELC which is designed
to modify the conductance matrix in such a way as to allow the ACR heater con-
trols to use the same equations in the simulation as the node temperatures.
The output from this routine is an enlarged conductance matrix and several elec-
tronic vectors. Once these two routines have been computed COMPUTH calculates
the radiative exchange coefficient between surfaces for each cavity. Due to
the linking of cavities a and b, as defined in Appendix C, dome filter or

fictitious surfaces, the radiative exchange coefficients for these cavities
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are stored for later use. The results of COMPUTH are then added together to
give the total radiative exchange coefficient matrix in COMPUTD, COMPUTB and
CMPUTBP. The results are then issued to two files, one formatted for in-

spection and one binary for use by the simulation program.

2.1.6.B Instrument Simulation

The program consists of four logical sections, an Input, the Integration,
the intermediate Output and the Plotting section. The actual solution to the
system of equations that describes each instrument is accomplished by the pro-
gram ERBESIM. The program steps through a determined time interval using an
evenly spaced discrete time step and solves each system using a Fourth Order
Runge-Kutta scheme to evaluate the system at the next step. Each system is
sampled at another rate controlled by the user until 20 samplings are taken
or the end of simulated time is reached. The results are then stored on mag-
netic medium for use by the plotting routines. The final product is the sen-
sor's resposne described by plots and tables of the modeled response of the
instrument, i.e., time-dependent temperatures of the nodes, instrument response
(in counts), electronic voltages (in volts) and input source irradiance (in
W/mz).

The first section of the program reads the coefficient matrices and vectors,
intitial conditions from binary files, and the simulation control variables
from a namelist file. The Namelist file contains variables for controlling
simulation time step size, sampling rates and the combination of instruments

and radiation profiles, etc. which are to be simulated. The simulation is
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capable of allowing the user to choose either a sawtooth, Fourier series, step
function, constant or ramp radiance profile.

The Runge-Kutta method used was developed by Fehlberg and solves the system

5
Yi,m+1 = Yi,m +h jEO Aj Kji’ i=1, 2, 3, ... number of nodes
where
i
Kyp = £(e, + Oy My vy + B g by Ky

where f is the function describing T(i) from Eq. 39 as functions of time and
temperature, aj, bjl’ and Cj are constants determined by Fehlberg for solving

first order non-stiff systems of ordinary differential equations.

2.1.7 Count Conversion for Nonscanner

2.1.7.A Nonscanner Total Channel

In the active cavity radiometers, the electronics control the amount of
heat added to the active cavity to maintain the temperature of the cavity
about half a degree above the reference cavity. The control of the heat input
to the active cavity is inversely proportional to the incident radiation en-
tering through the field of view and precision aperture from a given source.
In other words, the control system provides more heat input for the weak incident
radiation and less heat input for the strong incident radiation. Thus, the
voltage driving the active cavity heater provides the sensor output proportional
to the incident radiation. The voltage reading, after A/D conversion, provides
the sensor output in counts. The sensor output in counts is then converted into
engineering units. The algorithms for the count conversion are of the gain/offset
type, and are derived based on the sampled instrument data, e.g., sensSor response
(in counts), HK temperatures, etc. and the instruments radiative and conductive

interactions.
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The following is the count conversion equation for NS total channels.

B(c - T) = A v2(t) + AH[TH(t) - Ty ]+ AA[TA(t) - TA ]
o

C
+ A.F[TF(t) - Tp ]+ B (40)
(o]

The constants in Eq. 40 are defined as follows

B Ka
A =--2 (41)
v 1
.. A& T 3 42
Ay = B,  k#AF Dk Tk (42)
D
18 .3
= - —_— 43
A, 44— Tg (43)
1 o
D
16 .3
= - 4 — 44
Ap h—5— Tg (44)
1 o
2
B ____A_l.z_ b - g P.l'.l_(. T4 .___._‘LB__._._.. (45)
Bl E =1 Bl ko 4RB M1 Bl
where
V = instrument output (in volts)
TH = measured heat sink temperature (OK) at time t
T, = measured precision aperture temperature (OK) at time t

measured FOV limiter temperature (OK) at time t

3
]

The remaining quantities, i.e., B_, K , Bl’ T, D

and b_ are con-
a a E

ik* 412
stants which are specified for each instrument. These constants for the count
donversion equations are determined for the simulation study of the instrument

model using ground and inflight calibration data. These parameters or constants
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may be altered at various points in time, usually after a flight calibration,

in order to reflect any changes in the instrument characteristics.

2.1.7.B Nonscanner Filtered Channel for Shortwave

For the filtered channels, the count conversion has a set of two equations

for short and longwaves as follows:

(46)

ay, ﬁs + 0, A¢9 = 8, 47)

The coefficients of the terms in the above equations are given by the

following equations,

—

@) = Byg ~ By (48)
o = 4D, . T (49)
12 1,9 "9,
@y = Bgg ~ Bos (50)
. 3
Gy, = Ag 4+ Ag g~ 4Dy o T9o (51)
2 2
‘ n \Y) n [ v B
) _ 4 B ) 8 3 VBB
By = (A, bp -y Iy Dyy Ty TR M 4G48.6 Pik Tk )
o B 1 o 16R.B M
1
% (T, - T, ) - 4D T3 (T - T, ) - 4D T (T - T.)
TR “D,g Tg Ta ™ A 16 76 TrTF
o] o] [0} o] o]
-B K v>-B, E (52)
a a s ie
ng 3 “g 3

By = k1 Dok Tk Agg(Ty ~ T9o) + Agg(Ty - T9o) + 4(g4t8,9 Dok Tko)

3 3
(TH - THO) + 4D98 T8°(TA - TAO) - 4D16 T6°(TF - TFQ) + BlZ E (53)

*
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The filtered channel count converstion is obtained from the solution of
two simultaneous equations (Eqs. 46 and 47). Thus the solution to the equations

is given by

. . 1
- E = (., B, - a., B,)) (54)
s all 022 - alz a21 22 "1 12 "2

1
T, = (- a,, B, + 0., B)) . (55)
9 all a22 - 012 a21 21 "1 11 "2

The longwave incident radiation estimate is then defined by subtracting
the shortwave incident radiation from the total incident radiation estimate.

That is,

E. =E-E (56)

The constants in Egs. 46 - 56 are

v, = shortwave channel output (in volts)

Es = shortwave incident radiation estimate (W/mz)
EL = longwave incident radiation estimate (W/mz)
E = total incident radiation estimate (W/n?)

The temperatures of the heat sink, aperture and FOV limiter, TH’ TA’ and TF’

are measured as before in total NS channel.
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2.1.8 Solar Monitor Model Analysis

The solar monitor is different from the nonscanner in size, shape and

design feature as shown in Figure 6. It has a barrel structure ~ 9.5 cm long

between the primary and secondary apertures. The tail of the core body of the

instrument is attached to the housing and includes the primary and secondary

apertures, barrel, heat sink and active and reference cavities. This instru-
ment has a shutter located in front of the secondary aperture. The shutter
operates on a 64 second "on and off" cycle in which it is open for 32 seconds
and then closed for 32 seconds.

Since this instrument deals with a strong intensity of the incident
the heat sink temperature controller, the

radiant energy and does not have

heat sink has a larger heat capacity for damping out the effect of large in-

put temperature gradients.

However, it is desirable to check whether there is any transient effect
due tn the periodical on and off mode of the shutter, the strong intensity of
solar radiation, and the excessively long barrel geometry. In other words,
it is desirable to check whether the steady-state approximation is appropriate
to develop the count conversion algorithm for the solar monitor. Thus, we
introduce two simplified geometries here to check how fast the temperature
reaches a stable condition, as every 32 seconds the solar radiation is
viewed.

First, let us assume that the shutter has a rectangular shape of thin
aluminum plate and the shutter is partly exposed to the incident solar radiation

for a 32 second interval of the full 64 second cycle and has a radiation inter-

action with the isothermal neighboring components at any time. Figure 13 shows
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the shutter model.
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FIGURE 13. The Shutter Model

It is assumed that the left end of the shutter is insulated and the right
end is attached to a temperature reservoir which has a large heat capacity.
Then the energy balance equation, the initial and boundary conditions govern-

ing the above model can be written as

2
of _ k 9T g"
G.E . pC ETY -—'pc %2 + (57)
I.C . T(T = 0) = T

o

B.C . Tx(x =0, T) 0

T

Tx(x =L, 1) b

The above equation with Neumann and Dirichlet boundary conditions can be
easily solved by introducing a new variable and separating the variables.

Thus the solution to the equation is described by

(—1)n —aAnZT

T(x, 1) = T, + 20771 By Gy e €OS (Anx)
sy 2 n 2
S:]i— - .’..(\2 - °“ Lf“l)_ -aAn'T
T 2k§ {[ R ] 4 Lo Gyl © €OS (Anx) (58)
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where To is an initial temperature set by 273.16 OK, L the total length of the
shutter (6.5 cm), § the thickness of the shutter (0.2 cm), k the thermal con-
ductivity (1.557 w/cmoK), 2 the exposure length to solar radiation (2.5 cm),

p the density of the shutter (2.713 g/cm3), ¢ the specific heat of the

shutter (0.887 J/goK), a the thermal wave velocity (0.647 cm2/sec)

o (2ntDT

An 5L n=0,1 2, ...

ﬁ; is the solar flux (0.142 w/cm2) x 0.2
& =Feo (T2 - 17

Q" = ﬁ; u(f-x) u(32-1) + Q; u(-x) u(t-64) u(96-1) ... +2q

F the configuration factor between the shutter and the neighboring
components (0.85)

€ the emissivity of the shutter surface (0.8)

o = the Stephan-Boltzmann constant

T, = the ambient temperature (use T = Tb)
Tb = the reservoir temperature set by 273°K,
T = current shutter temperature, but use T(1-1)

u(x) = the unit step function.

The graphical description of the solution is shown in Figures 14 and 15.

Figure 14 shows that the shutter temperature not only responds to the on and off

mode of the solar flux, but the peak temperatures as well as the minimum temp-
eratures of each cycle (64 sec) also stay at the same ranges. That is, the time
averaged temperature of the shutter does not change sifnificantly. And Figure
14 also shows that the temperatures before reaching minimum and maximum points

become stable. Figure 15 shows the temperatures along the length of the shutter

after 100 seconds passed.
Secondly, the long barrel which is placed in the housing and is between

the primary and secondary apertures is considered by the following assumptions:

1) no direct exposure to the solar flux

42



TENPERATURE (DEG K
3
|

3
=

:

I T R S

FIGURE 14, SHUTTER TEMPERATURE AT X = 1.5 CM WITH 20% ABSORPTION

] 80 %
TIME(SEC! FOR X = 1.5 CH

OF SOLAR FLUX Qs = 0.142 W/CM2,

ue

43



44

3
I

TEMPERATURE ( DES K)
3
i

3
]

| | _

2.5 3.0

289 | | |
g 1.0 1.8 2.0
X(CM* FOR TIME = 100 SEC

FIGURE 15. SHUTTER TEMPERATURE AT 100 SECONDS WITH 207 ABSORPTION
OF SOLAR FLUX Qs = 0.142 W/CM?.



2) radially uniform temperature since the wall thickness is thin

no circumferential temperature gradient

3) i
radiation exchanges only at inside and outside walls

4)
The configuration of the model is shown in Figure 16
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FIGURE 16. A SIMPLIFIED CONFIGURATION OF SOLAR MONITOR BARREL

The equations and boundary conditions governing the thermal conditions

imposed upon the above geometry can be written as
G.E .a_I. =k BZT + _é:__
e Pe Bt ?x2 T R -R (59)
o i
I.C. T(T=0) = Tb
B.C. Tx(x=0) = q (set to be constant)
T(x=L) = Tb .
A J
Then the solution to the equation is obtained as
. ur L 2k(R -R ) Q. x
n 2k(R -R.) q_ 2
0 ol 1 -ain“t

q" 11‘ (Lin) 2 n Cos (Anx) (60)
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where

LA 1] "
qa; + 4,

0O
]

v B el G, e5) - ™ (x, t-1))]

O
"

ay = lag - ale,Fy )

§n = Fy_oe,0lTe (in %) - % (x=0. t-1)][u(64=T) u(1-32) + u(128-T) u(t-96) + ...
Tp = 273:16 °K

L =10 cm

k = 1.557 w/em °K

a = 0.647 cm2/sec

Ro-Ri = 0.5 cm
An = (2ntl) T

2L
q; = 0.146 [u(32—1) + u(T-64) u(96-T) + ---]
Fiq =0.75
€ = 0.8
Fl, = 0.4
€, = 0.08
F1—3 = 0.4
€y = 0.5

The above values are used in both the shutter and barrel cases. These estimates
were selected to best represent the solor monitor based on the material and
thermal properties of the shutter and barrel. The results of the calculations
described in Figures 17 and 18 demonstrate that the temperatures do not change
very much with respect to time or in the axial direction of the barrel since

they exhibit only about a half degree of temperature change in both cases.
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Therefore, these results show that the steady-state approximation for the
count conversion algorithm does not contain any crucial errors. Therefore,
the open and closed modes of the shutter were considered in the algorithm
development. Namely, the output responds to the direct radiation which falls
into the active cavity according to the shutter's on and off modes. Even
though the instrument has a small time constant and hence it is stabilized
quickly, within the 32 seconds of a half cycle, the output data which is used
for the conversion algorithm has to be picked up at the near-end of a half

cycle just before the shutter closes the aperture.
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2.1.9 Solor Monitor Count Conversion Algorithm

The approximations made here including the steady-state approximation are

the following:

1. The nodal points are selected to be adjacent to where the temperature
probes are so that the temperatures measured by the probes may be
regarded as the temperature of the nodes.

2. Tl = T2 + bE where bE is the electronical bias.

3. The temperature of the reference cavity is the same as that of the
heat sink, that is, 12 = T3. Accordingly, Tlo = T30 + bE where the
subscript o signifies the initial temperature.

4. T1 - T10 can be replaced by T3 - T3°.

With the above approximations, the equation for count conversion was derived as
~A 2
- = + - + -
E(t-T) AVV (t) A3 [T3(t) T3o] A5 [?S(t) TSo]
+ - + 61
A [T7(t) 'r7o] B (61)

where T, TS’ and T7 are temperatures in Ok which are measured in the instrument.
These temperatures are measured and telemetered every 16 seconds. If these
temperatures are measured twice during the open period of the shutter, then the
second measured temperatures can be used for the count conversion algorithm.
Otherwise, as the temperatures are measured arbitrarily without regard to the
shutter on-and-off mode, the temperature measured at or near the time before the
shutter closure must be used. As well as the temperatures measured, the count
has to be picked up at every 40th data point or near the time before the shutter
closure. V(t) in the equation is the instrument output in volts and is tele~-
metered at every 0.8 second intervals. The constants in the equations are

obtained from the thermal control electronics and conductive and radiative

heat transfer, all of which interact with the active cavity and the nodes
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which have temperature probes. In the equation,

B.K
- - —a—a
A B) (62)
4 3 3 3 3
Ay = - -1-3? [Dl-lTlo + DI—ZT%O + D3T3, + D1-4T40 + 01-6T6()
3 3
+ D)_18T180 * D1-19'1‘190] (63)
4 3 )
As = - 31'[D1-5T%o + D1-6T6o] (64)

4
W e————— 3 3
4773 [91—7T30 + D) gT3, * D1-gTgs * P1-11T{10* P1-14T140

3 3 65
+ D1-15T155 * D1-17T17o] (65)
2
A _ Dix 4 _ BjKjV™ _ € (66)
B= 7;} bg = Ik B, Tko T B, B

K, K

J’ a J’ V’ Bl’ T’

the quantities such as Ba’ B and bE are the

Dyyo Tko’ A3

constants to be specified for the instrument.

2.1.10 Scanner Control Electronics

The control electronics for the scanner have a different feature from
that of the nonscanner. The difference between them is attributed to the
type of sensor in the scanner. The scanner usés thermister blolometers for
both active and reference flakes. When the temperature of the thermister
varies due to the energy exchange, the current through the thermister varies
with the change of the temperature-dependent thermister resistance. 1In the
scanner instrument, the active flake that is attached to the heat sink in-
directly responds to the incident radiation from the source through its op-
tical arrangement. The reference flake is also attached to the heat sink
and is placed where the space is totally sealed by the surrounding materials
such as the heat sink and housing. Thus it is assumed that the reference flake's
temperarture is equal to that of the heat sink and its housing. Accordingly,
the observed difference in resistances between the active and reference flakes,

is proportional to the incoming radiation.

51



Figure 19 is the block diagram for the scanner control electronics and

their transfer functions.

The thermister resistance as a function of temperature is given by

T

- 1 _ 2 =
Ry(T) = Ry(T.) EXP B, (7 o, imL3 (67)

Using the polynominal expansion of the exponential in Eq. 67, the difference

in resistances between the active and reference flakes is approximated as

R, B R, B R, B, -R, B
) _ Mo 1 30 3 1, P17 R3, B
R)(T)) = Ry(Ty) = =7~ Ty + 72 Ty * T, (68)

The constant in the bridge is defined by

2v
- B k(l + k)
Kg = R T+ 202 (69)

The transfer function of the bridge is transformed into a differential

equation as shown in the following

T, X, + x, = KB(RI - R,) (70)

171 1 3

where Tl is a time constant which, for the case of the scanner is less than

10 ms.

For the preamplifier, we end up with the equation

T. %X, +x, =%, +T, X

2 72 2 1 371 Kc CB + (Eos +o0) T3(Eos +n) (71)

Thus, the following equations describe the energy balance equation (Eq. 72) and
the differential forms of the transfer functions, (Eq. 73) which include general-

ized forms of the amplifier and filter and a model of each scanner channel

T = AT + pT® + BQ 68 + BE (72)
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k=A x+B +Bos(Eos+n)+BcCB+b (73)

T

where T is a 14 component vector consisting of node temperatures, X is a 6
component vector consisting of electrical signal processing variables, 68 is

the heater heat flow rate, Eos’ CB’ and b are electrical and flake related vari-
ables, n is the total noise as viewed at the preamplifier input, and E is the

incoming radiant incidence vector. The measured quantities which are telemetered

to ground are the raw counts, X., and the heat sink temperature T7, measured by

a thermister.

6 (74)

where v is the measurement noise including quantization error due to A/D

conversion.

2.1.11 Scanner Steady-State Analysis

Two types of transient behavior will be noticeable in the instruments.
One type occurs when the heater 68 is activated, i.e., when the instrument
is turned on. The transient behavior in this case is rather slow, as the
heat sink time constant is large and the conductivity of the filters (for
SW and LW instruments) is low. Thus, the time period necessary for the
various node temperatures toO reach their relatively steady operating temper-
atures, particularly the filters, will be long. The precise period can be
determined by simulation or measurement.

The second and more important transient behavior is due to quick
variations in the input (or observed) radiation incidence, E, after the opera-
ting condition has been reached. The time constants, in this case, are

determined largely by the electronic signal processing parameters and the
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flake characteristics. After the operating condition has been reached,
the temperature variations of most nodes should be negligible. The active
flake temperature then varies with the incoming radiation. The flake
resistance and‘other electrical variables also vary with the incoming radiation
and can produce transient behavior which can be observed if the target level
is changed suddenly, as a step function. On the other hand, if the incoming
radiation varies slowly relative to the system time constants, then the system
will operate in quasi-steady state condition. A preliminary analysis indicates
that, for the parameters selected by the designer, the applicable time constants
are in the vicinity of 10 ms. Thus, if the input radiation does not contain
frequencies above 10 Hz, the transient will be negligible, while frequencies
above 17 Hz, willfbe attenauted. Whereas the earth scan may have low content
in the high freqﬁencies (which are of less interest to ERBE), the tramsition
from space to Earth may produce a necessarily short period of transient behavior.
7

It may be of interest to analyze the magnitude and duration of such transients,
which probably last less than 50 ms.

Since the quasi-steady state condition is of interest to this analysis,
let us first consider one scan period. The scanner looks at space for a period
nsufficient" for the transient effect to die down and obtains an average of the
last few values (to reduce noise and errors) as the "space clamp". Then the
scanner sees the Earth and atmosphere, then looks at two black bodies at ambient,
but known, temperatures as well as the SWICS in the off condition. The kAt
correspond to the kth space clamp, so that T(kAt) and x(kAt) are the temperature

and electronic vectors at the space clamp measurement. Now let
Ax(t) = x(t) - x(kAt), AT(t) = T(t) - T(kAt), kAt € t € (k+l)At. (75)

From Eq. 72 and Eq. 73
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3¢ .
AAT + 4D Ty BT + By AQg + BE (76)

9

R

Ax AxAx + BTAT + Ad + BosAn, (77)

where it has been assumed that the thermal and radiative properties are in-

cluded in A, D, B_ and B and the time constants for the electronics in Ax, Bos

Q
and BC have remained unchanged over the scan period of 4 seconds. Also we can
define Ad, the drift component of the voltage as,
Ad = ABT T(kAt) + Bos AEOS + Ab + BC AcB (78)

Considering the amplifier and Bessel filter to be in a quasi-steady

state condition, it can be seen that

Ax(t) = Kfo Bx,(t) + Kfo Kxg (£) (79)

where Z§2(t) is the part of sz(t) with lower frequency content (below 10 Hz)
consisting of an averaged part of sz(t), which may be considered the signal
part, and &ke(t) is the part of Axe(t) consisting largely of noise and irradiance
variations over short distances at the top of the atmosphere with zero mean.

As the filter attenuates high frequencies, Exﬁ(t) will have a low amplitude.

The preamp equations are expressed as

TZ Aiz + sz = Agl + T3 Ax1 + AEos + An + 13(AEos + M), - Kc ACB (80)

Now assume that

R

T, K’—‘z -1, AEOS 0 (81)

then

sz = Ax1 + T, Axl + AEOS - Kc ACB + An (82)
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where Z;l is the low frequency portion of Axl, and where it has been assumed

that AEOs and ACB are baseband signals. Note that

sz = sz + sz, (83)

where &%2 contains the higher frequency components of sz and causes the term

&§6. The bridge equations are now expressed as

t. A%. + Ax. = T. B. AT. +T. B. AT, + &b, +T, AB. T
1 %%1 RS B R D B P 17 P,

+ T.,AB T. + T, AB AT, + T, AB AT (84)
1 T13 3 1 T11 1 1 T13 3

It is assumed that the only variable on the RHS containing higher
frequency components is Tl, whereas the remaining variables are slow moving

drift components.

Mx. = T.(B. AT, +B. AT, - Ax.) (85)
IS S S T P 1

Combining Eqs. 85, 82, and 79,

Iiz = Tl(BT Fr'l + 13T AT3) + (13 - Tl) 'E)Tl - T, X,

11 13

+ Eos - Kc ACB + An (86)

bx. = K. T.(B. AT, +B AT.)
6 £ 10T, 17 Ty 3

+ Kfo [(T3 - Tl) Axl - Ty Xy + AEOS - Kc ACB + An + Ax6j] (87)

Now consider the thermal equation

. N 3

AT, = A,(8T, - BT)) + 4 &) Dy T, AT, + B;E (88)
- - N 3 2

BE = A, (AT, - AT,) = 4 I, Dy T, AT+ Ty (89)



28

_ Br
AT = x, - 3;451 AT, - ———%;——— § (90)

X~ Ty Xy + AEOS - Kc ACB + An + Ax6 (91)

Substituting Eq. 88, 90, and 91 into Eq. 89, we have

(A.. - 4D, T T
- By 11 11 ) . N3 ) 3
BiE =X, 1, B; Axg = Ay, 8Ty By (Ay, = & Dy TPIATy
o 11 11
N 3 . (A, - 4Dy Ti)
- I, 4Dy T AT AT - 5 (92)
1Ty,

2.1.12 Scanner Count Conversion

The scanner count conversion algorithm below 1is based on steady state
approximation. The structure (i.e., the form of the equations) of the algorithm

is the same for each of the three scanner channels. The parameters have

different values for each channel.

The average of scan points during space clamp is given below

- 11 g
v(tk =3 iél v(tki)’ n=28 (93)

The mean variance of the counts compared with the space clamp during a scan

cycle is obtained by the equation
2 11 - ]2 |
o, =4 ik [v(tk) v(t) (94)

The scanner count conversion equation is then defined by the following

equations
t-t
E(t - T) = Av[y(t) - v(tkﬂ + AH [TH(t) - TH(t)] + A6 Gk At ,

t st (95)

k=1



The coefficients in Eq. 95 are the following

3

R e F 0 VBg o6
v K Kf T, B V., (t) (96)
1 81 B
o 11
_ 1 3 3 3 3 3 3
Ay 4 [Dn Ty + Dyp Ty + D3 Ty + Dy T, + D35 Tg + Dy Tg
+D.. T +D, . T |-aA (1+133]-3~)l 7
18 Tg *P113T13 12 B ) X (97
T
11
A, - 4D Ti VB,
A=c — =c K. A (98)
KT, B V() £ A

11

1 [- -
8§, =—— |v(t,) - v(t, )| - T,(B +B. )|t () ~ T, (£, )
k Kfo[ K k-l] 17Ty, Ty [H Kk H k—l]

T
1

(B T, + B .
Vvt b s Ts)[vn(tk) - VB(‘k-l)]'

[o]

+ Kd[Vd(tk) - Vd(tk_l)] (99)

£ = f F At (1€0)

|

In the last term of Eq. 95, (t-tk)/At can be replaced by the number of measure-

ments in the scan mode as follows:

t - tk
At

= 0.0135 (J-8) (101)

where J is the number of measurements in the scan mode. The constants in the

above equation are the following:
;(tk) = space clamp value at time €
v(tki) = instrument output (in volts) when viewing space at tk

oi = noise variance estimate during space look
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v(t) = instrument output sample at time t
TH(t) = heat sink temperature measurement at t or most recent value (°k)
At = total scan period (4 sec.)

tk = time at end of space look (sec.)

t = sampling instant (sec.)

VB(t) = detector bridge bias voltage measurement at time t or most recent

value (V)

Vd(tk)==drift balance DAC voltage measurement at time t or most recent

value (V)

Gk = estimate of unaccounted drift during kth scan period (V)

T = average time lag (sec.)

kf = post amplification gain

o

Note that to compute Gk, it is necessary to have the following space clamp
value; i.e., ;(tk). If the term with Gk in Eq. 95 is neglected, then the count
conversion may be done without using ;(tk). The variance ci is computed for
diagnostic purposes and should be output as described below. The converted
value Ei(t -1), 1 =5, T (for shortwave, longwave, and total, respectively)

can be interpreted as follows
B (6) = £ 7,00 Ey(e) dh + ey () (102)

where Ti(k) is the transmittance of the ith channel, Ek(t) is the spectral

irradiance at the instrument due to radiation from the footprint at time ty



and ei(t) is the error in the measurement combined with the count conversion
process, and can be estimated through analysis of calibration data and model

results.

2.1.13 Accuracy and Diagnostic Checks

During each scan, the instruments view two black bodies at ambient, but
known temperatures. These data can be used to determine if the basic operation
of the instruments have changed as well as provide an approximate accuracy check
of the combined error ei(t) in Eq. 101.

1. Store a table of elements

(vp(Tg)s Ve (Tp)s Vpr(Tp)s EBS(TB), Ego(Tg)s Egp(Typ)) where Ty = Tgy
th

1 < j £N. The values vBi(TB) represent the steady state output of the i
channel when viewing the black body at temperature TB’ and may be obtained in
calibration tests. The values EBi(TB) represent the output of count conversion

when viewing the black body at temperature T,, given by

B’
EBi(TB) = fri(k) EBA(TB) da (103)
where EBA(TB) is the spectral irradiance from the black body at temperature TB'
2. Compute E_ . using the measured black body temperature TB(t) as

Tp(t) -
T

Tp1

E (T (t); = E . + =
Bi B Bi 82 = Tp1

[EBi(TBz) - EBi(TBl)] (104)

where T_ . < TB(t) <T

Bl B2

3. Compute ﬁi(t) using the count conversion algorithm with the corresponding

value vi(t).

4, Plot vi(t) and vBi(TB(t)) on same axes.

8, Ploe B, (&) and uBi(TB(E)> BN BAMS ARSE,

i
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6. Compute and plot oi, and

evi,k+1 = avik + (1 - a)(vl(t) - vBi(TB(t)))

: a s, +(1-a)E(t) - Eg (Ty(e)))

ekl - 2 ik

ol cac? +(-afw ) - v (T () -e ]
X, ,k+l v,k i Bi B v, k+l
i i i

2 =add +@-a) [E(e) - Ey (Ty(0)) - e ]2
i k+1 ik A Bi''B i, k+l

2

(105)

(106)

(107)
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3. INSTRUMENT PERFORMANCE AND COUNT CONVERSION TEST

The instrument models developed for the non-scanner, the scanner, and
the solar monitor are based upon the theoretical approach with a certain
degree of approximation. For instance, the energy equations for the instru-
ments were formulated with the assumptions that the node (or control volume)
has uniform temperature and homogeneous thermal and radiative properties.
However, this lumped geometry of the node, in reality, cannot hold the
uniform temperature through the node geometry unless the temperatures of the
neighbor nodes are the same, or the node boundaries are perfectly insulated,
or the thermal conductivity of the node material is infinity. Otherwise,
if there is any heat flux allowed into or from the node, a temperature grad-
jent from the center of node to the boundary will exist.

The radiative properties that are used in the ERBE radiometer instrument
models may be the values picked out of the handbook or measured and averaged
values over a certain band of wavelength. No matter where these values were
obtained, they would introduce some errors when they are used for the compu-
tation of the radiation exchange between the surfaces. The spectral distri-
bution of the emissive energy flux from a source of radiation such as MRBB
may lie on the limited range of wavelength in which the averaged radiative
properties used may be far above or below the real values within the spectral
energy distribution. Therefore, the averaged values may not represent
reality in instrument performance. Also, during long term operation in space,
these properties will be subject to changes due to various reasons such as
thermal and environmental contamination, and aging effect.

The electronic systems are used in the radiometer to measure the temper-

ature difference between the active and reference cavities or flakes, and to
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digitize the signal, then to transmit it through a telemetry system. The
parts such as resistors of this electronic system are sensitive to a wide
range of temperature changes. For instance, if the resistance of the bridge
slightly changes from the reference point, then the error in irradiance
measurement due to this temperature change may be in error by a few watts

per square meter. Although the instrument models are well-conceptualized and
designed, the real behavior of the radiometers are, as expected, different
from what is was designed to be.

Other factors to be considared, which influence the sensor performance
and measurement accuracy, are the inflight changes from the states that the
sensor normally operates in and the calibration source variability in its
operation mode or the changes in source characteristics. An environmental
change was expected in the long-term operation of the instrument due to the
orbital changes which caused cyclic variations in the heat load of the in-
strument. Another change, was due to the contamination or degradation of
then senosr surfaces due to radiative interactions with other surfaces.

The internal calibration sources such as MRBB and SWICS are also sub-
ject to change. The monitoring of the change in intensity of these sources
by possible variation in power supply and shift of the spectral distribu-
tion in the source output is possible by using the SiPD, although it is also
subject to change, and intercomparing calibration sources.

To account for the possible errors due to the reasons discussed above
a procedure was developed to detect those errors. The procedure uses the
algorithm shown in Figs. 20 and 21 for that purpose. This algorithm is
capable of evaluating the sensor model, adjusting the simulation model para-

meters for minimum errors, and establishing confidence intervals for the

64



Sy e
AR I'i

. PAGE IS

‘07 TN914

OF POOR QUALITY

ORIGIN

135000% WYY V)
904 JHVISIIY WLIRODIY
TIHNOS HONVNEITY)
XM w04
lewew
us
s vosint
[V
0N
witati v
W0IWHND
. S — L
MOTEVESIWD JAISSIIONS _
jampye!
T0S HONVINITYY
eh
10008 0w
WS

65



NOLLVIHIIINGON
IN3DS

llIllll\\\\\\\\\\\lllllll/

SINIWTINSVIW L30UVL HINV] @
‘SINGWIANSVIW G31VD01-00 @

{AOIW SA N} AJNIISISNOD TVILVdS ®
M1 - L= MS) AINILSISNOD TVHLIIdS ®
‘SIOVUIAVYH - 2T @

S1S11 NOLLVGIIVA €

‘1 TYNo14

IWIL SA VIVQ IUN0S NOIIVEEITIYI

ONY "S13SINIYI NOISYIANOD
*SIOVIIOA “13¥ ‘STUNIVYIAWIL "STYNDIS
TYNLIY GNY @BLII@IYd JYVIW0DI OL
SAV14S10 JIHAVYI BLV¥INGI-YILNIWOD

INIWSSISSY TVILING °L

—_

S1300W 303N0S
NOHIVISIIVI

STYNOIS INGLNO HOSN3S

NY1d NOLLYQITVA INSNNYLSNI 3843

S_umgz_
|
e -
r———-- A
{ “ *V1vQ @I¥IANOD 403 (.SUVE
“ NoIL07 H ¥0¥¥3.. " 9°1) STIAIT IINICIINOI HSIBVISIe
b ! 'ST300W 19UN0S NO1LVEBITVD
" ¥0LIvI 3314 “ QONV HOSNIS JO ¥3I1IWYYVd 31vadne
i 1 SISATVNY HO¥Y3
b e om e e J
/ o
#ouY3
1| 1\ g
v v i
B 1
1A Y04¥3
3
v F A
vy
SWHLIN09Y p STI00W
NOIS¥IANOD 3 yOSN3S %y
K
SIYNLVYIAWIL ONV

v1va 3¥N0s
'NOILVEEITVD

66




converted data reflecting sensor characteristics and calibration sources.

The sensor simulation model responses, using known calibration sources
as inputs to the model, are checked against the instrument calibration out-
put. Any differences in the slope, offset and curvature between the simula-
tion and calibration results were interpreted as uncertainties of the model
simulating the instrument. These differences, however, generally reflect
the problems discussed earlier. In the algorithm, these differences are
narrowed by checking and adjusting the sensor model, source, and environmental
parameters to minimize the errors. However, the estimated parameters must
stay within the tolerance that can be allowed by the approximations made in
the modeling or by the nature of reasons described earlier.

The algorithm consists of three parts (see Fig. 20):

The first part is a routine to adjust the sensor model parameters by com-
paring sensor simulation outputs such as counts and HK temperatures to the
inflight and ground calibrations obtained for the known sources.

The second part is a procedure to check the errors generated by simulating
a sensor by comparing them to the calibration data for the known sources. It
checks the error generated from the sensor simulation target source, or envrion-
ment at different time intervals for the same known irradiance source as in
the inflight calibration.

The third part consists of routines to search for any changes in the target,
environment and sensor performance due to the degradation of the instrument
surface, vibration, contaminations, and thermal and aging effects on the radia-
tion interactive surfaces.

To do the above job, the algorithm has been designed to have the following

capabilities:
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1. to adjust the sensor model parameters in comparison with the
calibration data from known sources to minimize the error be-~
tween the sensor model and the calibration data,

2. to periodically check any changes in sensor, target and environment
parameters between inflight calibrations by comparing the calibration
data for the same sources at different time intervals (e.g., 1 or 2
week periods),

3. to re-define the sensor, target and environment parameters, if
they have been changed,

4. to test and check any differences between calibration data and

responses from the simulated sensor model for the same known

sources,

5. to repeat the routines 1 through 4 until the errors produced by
step 4 are minimized,

6. to generate the count conversion parameters.

3.1 Description of Routines

3.1.1 Routine I

The calibration sources identified during either ground or inflight cali-
brations are numbered by j = 1, N at time ti and ti+1 where 1 = 1, n. The sensor
simulation model generates temperacures and sensor responses corresponding to the
calibration sources at a time L These temperatures and sensor responses, which
are obtained from the model simulation, are compared with measured data to com-
pute errors of the simulation model. Once these errors fall within the pre-
determined error bounds (after repetitive refinement of simulation parameters),

then these errors will be used as criteria to determine the measurement errors

68



against known targets on the ground. If not, the parameters for both the tar-

get source and environment effects will be checked; then in turn the sensor
parameters will be checked and adjusted, in case when the computed parameters

are not within the acceptable range based on the materials properties, e.g. its
optical properties. Such a routine will inlcude a decision block to check targets
and environmental effects to avoid unnecessary adjustments of sensor parameters

when the errors may be caused by and come from the target and environment para-

meters.

3.1.2 Routine II

If the errors are within bounds, the sensor responses Vj’ j =1, N at dif-
ferent times ti and ti+l will be sorted and evaluated in Routine I to check the

errors from the sensor simulation model for the targets at different times ti

and ti+1‘

3.1.3 Routine III

After finishing Routine II, using all the target sources at different times,

t, and t Routine III checks the sensor respones of the same target at a dif-

i i+’

ferent time and computes the errors. If the error of the same target at a dif-
ferent time falls within the error bounds, the Routine will check the next tar-
get. If not, the history of target source variation will be studied, and at

the same time the sensor and environmental conditions will be rechecked to deter-
mine the source of errors. This evaluation in Routine I is performed whenever the
error signals the flag. The process continues until the error source is recog-
nized and its correction of error is made by adjusting the related parameters in
the simulation model. When this Routine finishes satisfactorily evaluating all

of the target sources, the program will print all the decisions, errors, sensor
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and calibration source HK data, sensor parameters and counts and will supply the

final results to the count conversion algorithm.

3.1.4 Routine IV

1f the error does not fall within the prescribed error bounds, the target

and environment parameters are checked in order to find whether changes in these

parameters created pseudo-errors in the sensor responses. If there has been a

change in either the target or environmental parameters, they are re-defined
and re-input to Routine I. In spite of repeated checks, if the error cannot be

minimized, then the thorough review of instruments will be required to determine

whether the error bounds are to be reassessed. In this routine, when the target

and environment are checked and relatively free from the erroneous performance
then we would postulate that the instrument's measurement capability might be

deteriorated due partially to the thermal and environmental contamination or by

other means such as aging of the parts and so on.

70



4. DISCUSSION OF PARAMETER ESTIMATION

The simulation code was developed to study the sensor instrument responses
and behavior during the ground and inflight calibration procedures as described
earlier in Section 2.1.6. This simulation code uses the irradiance at the FOV
limiter of the instrument as the input data. All the constants representing
the instrument geometry, material, thermal and radiative properties and the
electronic thermal control systems are parameterized to be used as coefficients
in the system of equations. Then the simulation code generates the counts and
the nodal temperatures of the model corresponding to the input irradiance.

When the simulation code uses the input irradiance which is the same as the
calibration source, the results of counts and housekeeping temperaures from the
simulation are compared to the calibation results. If the differences from these
comparisons for various levels of irradiance are wide, then the simulation model
parameters are adjusted to minimize those differences. This procedure for esti-
mating the model parameters is repeated until the differences can no longer be
reduced. These estimations also continue for various calibration sources until
systematic response patterns for each calibration source are established. All
procedures mentioned above are performed for each individual radiometer sensor.
Even though two instruments of the same type are used in the calibration pro-
cedure, for example, the results may differ due to the inherent differences in
the many factors involved, e.g. slight differences in the sensor assembly process
of uniform surface roughness, coatings, glue or contact areas.

The following is an example that shows how the parameters for the nonscanner
total channel are selected. Assume that the instrument output derived from
calibration input irradiances are linear; then the factors which determine the

slope and offset of the curve for simulated results would be judged to be the
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of fset temperature between the active and reference cavities, and Ehc radiative
constant for the term of irradiance in Eq. 34, i.e. Bl' To determine these two

factors using the measurement data, the linear form of Eg. 34 can be written

ax = B (109)

perature and radiative

where x is a column vector consisting of the offset tem

constant, and O and B are defined later. The solution to Eq. 108 is

x=(@ o ta B (110)

where a' is the transpose of .

The constant o is a matrix defined by

T 3 w
44 Ay + 4D (To)ys E,
A..+ 4D ('1‘3) E
12 11T’ 2’ 2
A+ & Do (T) E
12 112040 i

where i is the calibration sequence.

The constant B is a column vector

By = |8

By
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B as an explicit form is

2 .
- Ba Ka vi - ¢i - BJl QJl (111)

w
1l

4

¢l = E le Tki . only when k = 1, replace T,. by T21 . (112)

11

The nominal values are used for unmeasured Tki and QJl except T3 = T2 + &T.
The temperature of the reference cavity is a little higher than the heat sink
temperature due to the Joule heating by electric current flowing probe wire
of reference cavity. The temperature difference, 8T, due to the Joule heating
cannot be directly measured but can be observed from the simulation results.

The plots of the calibration and simulation results show that they are
not actually linear but could be considered to be linear for estimation (see
for instance, the steady-state response comparison of simulation of calibration
data for the NS WFOVSW sensor on page 100 in Appendix A). Therefore, the above
approach can still adjust the overall slope and offset of the curve by regarding
them as a linear. The linearity and adjustment can be made by adjusting other
parameters. But since almost all parameters are interrelated, the selection
of a parameter that mostly influences the linearity of the curve in a plot of
simulation results must be cautiously taken by testing the linearity with
various parameters.

Since the simulation code was developed, the calibration data for the
nonscanner rzdiometers using MRBB as a calibration source was the only source
available. Hence, the nonscanner instrument models have been simulated using
MRBB data which was used in the calibration. Figure 22 shows the calibration
data for the MRBB temperatures in the lst column and the count outputs for
the four nonscanner channels in the 6th through 9th columns. The 2nd column

shows the blackbody radiation corresponding to the temperatures in the 1st
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column. The 3rd and 4th columns show the percentages for the shortwave and
longwave portions of the blackbody radiation described in the 5th column,
respectively. These shortwave and longwave portions were calculated by the
integration of Planck's equation for blackbody radiation with respect to the
wavelength from 0 to 5 um for shortwave and from 5 ym to 1000 um for longwave.
These portions were used for the MFOV and WFOV shortwave instrument simulations.
The shortwave range selection of 0 to 5 um was simply made by the shortwave
filter (suprasil) characteristics. In the 6th through 9th columns, the numbers
in the bottom part of the blaock signify the output (in counts) corresponding
to MRBB radiation from the simulation. The 10th and 11th columns show the

differences in count between calibration and simulation tests.
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APPENDIX A

PRELIMINARY RESULTS ON ERBE NON-SCANNER INSTRUMENT

MODELING, COUNT CONVERSION AND SENSITIVITY ANALYSIS
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« DEVELOP A DYMAMIC SENSOR MODEL FOR EACH THSTRUMENT
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APPROACH TC ASSESSMENT OF IMSTRUMENT ACCURACY

DEVELOP A MATHEMATICAL MODEL AND COMPUTER SIMULATION FOR EACH INSTRUMENT

COMPARE GROUND CALIBRATION DATA TO CORRESPONDING SIMULATION DATA
MINIMIZE DIFFERENCE BY ADJUSTING MODEL PARAMETERS

PERFORM A SENSITIVITY ANALYSIS
ESTIMATE CONFIDENCE INTERVALS FROM GROUND CALIBRATION DATA

REPEAT SAME PROCEDURE FOR FLIGHT CALIBRATION DATA (ERROR ANALYSIS)
ADJUST ESTIMATE OF CCNFIDENCE INTERVALS AT EACH FLIGHT CALIBRATION
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APPROACH TO ADAPTIVE COUNT CONVERSION

DEVELOP A MATHEMATICAL MODEL AHD COMPUTER SIMULATION FOR EACH INSTRUMENT

COMPARE GROUND CALIBRATION DATA TO CORRESPONDING SIMULATION DATA
MINIMIZE DIFFERENCE BY FINE TUWING MODEL PARAMETERS

DEVELOP A COUNT CONVERSION ALGORITHHM (CCA) BASED ON THE MODEL
SIMULATE THE TNSTRUMENT AND CCA
ESTIMATE ERROR DUE TO CCA

REPEAT PROCEDURE FOR EACH FLIGHT CALIBRATION
FINE TUNE MODEL AND CCA PARAMETERS
OBTAIN NEW ERROR ESTIMATES
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL

MFOV TOTAL SIMULATION
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL

MFOV TOTAL SIMULATION
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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TEMPERATURE °C

SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYHAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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SENSITIVITY ANALYSIS USING DYNAMIC MODEL
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COHCLUSIOHS

" DYNAMIC MODELS HELP THE UNDERSTAMDING OF THE ERBE INSTRUﬁENTS
SIMPLE COUNT CONVERSION ALGORITHMS HAVE BEEN DEVELOPED

STEADY STATE SIMULATION AND GROUND CALIBRATION RESULTS ARE IN
GENERAL AGREEMENT

THE ERRORS DUE TO COUNT CONVERSION ARE BEING ANALYZED BY SIMULATION
INITIAL SENSITIVITY AND ERROR ANALYSES PROVIDE CONSTRUCTIVE RESULTS

OVERALL APPROACH SEEMS WELL-SUITED TO ASSESS INSTRUMENT PERFORMANCE,
ACCURACY AND VALIDATION
PRECIDING PAGE BLANK NOT FRED
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APPENDIX B

ERBE SCANNER SIMULATIONS
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These graphical displays were produced during development of the simula-
tion model. Please note that the plot of "OUTPUT (CNTS)" versus "TIME (SEC)"
in the graph on pages 169, 173, 174, 177 and 180 does not display quantita-
tively absolute values for counts generated from the simulation model due to

uncertain gain/offset parameters in the electronics.
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NON-SCANNER MODEL

The energy balance equation

n . .
Mk'Tk = Z -il__fis + Ak ¢k M Qsource @)
The second term in the right-hand side of the above equation is the
radiation interaction of the kth element to the other elements in an en-
closure. This variables are defined by the following approach.
For the radiant interchange in an enclosure having both specular and
diffuse surfaces, the surface properties are defined as the followings:

The reflectivity is

d s
Py = Pg t Py
d. s
Qs = pz + Oﬂ

where subscripts, s and £, signify short and long waves and superscripts,
d and s, denote diffuse and specular.
For diffuse and gray approximation, the following realtionships are

obtained

O
+
m
+
=]

1
-

From now, the subscripts for short and longwaves are omitted for brevity.

The radiosoty at the kth surface is

d _ o d -
Mk = € 0%, + pkEk + TkEk. . 2)

The incident radiant flux at the kth surface is
_ v 5 ol | ' "
E é Fk—ij 3)
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Combining the above two equations yields

d _ T _ d= -1 -
Mj = é( ji ijJ i) ((kﬂi + TiEi) (4)
From (3) and (4),
E = (.0 +TE)]F P (5)
- k L i i’ &2 "k-j j-i
1 J
where
d= -1
P = (8., - p.F, .
J=1 ( J1 pJ J‘l)
Q = oT“ .

The radiant engergy balance equation is the difference between the

incident energy and the radiosoty. That is,

b =B M
-E -¢ Q -p3E -p%5E -1, E (6)
k k "k k k k "k k 'k
Substituting (5) into (6) we have
O = z (A -0 € g Frei Pioi ™ i Skqd ©
- v F - E
+ g [(L -0 T, ﬁ Freg Pyos = Tk Sual By (7)
Let H .= ) F P
k-1 i k-j " j-1i b - cavity
Then, for the cavity a, the equation (5) can be
expanded as a-cavity
Blo = Ho1 1%y
+ [y g €g ¥ Hgg €9l U3
a
* Hig-10 €10 Y10
+ 12 T, E (A)
10-10 10 10

-~

E

‘10
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11 FOV
6 . E0
b-cavity
Eio
5 5
For the cavity, b
Elp = Bo-5 €5 %5 T Hioog %6 6 * HlO 10 <10 %0
7P T E._ +H t.. B (B)

10-10 10 10 10-11 11 "Fov

From (A) and (B),

= Q.
Eig =6 ¢ 0.1 ™1

a
+G eg Tyg Boos Hipo10 %5

X a
G ¢g T1o Bio-6 B10-10 %6

+ G[H 10

10-8 ‘8 T B10-9 ‘9! '8

-1 a b
+G e polH o 10+ Tyg Bro-10 Fro-107 %10

a h g
10 T11 H10-10 B10-11 Erov
2 a b -1

0 B10-10 F10-10

+GT

where G = (1

14

b )
Eyo = 6 €1 T10 Hro-10 F10-1 1

¢5 Bgos ¥

+
(9]

I'e)
“6 M10-6 "6

b
+ G Tlo HlO—lO[u
b

€10 H10-10

b
731 B10-11 Epov

10-8 €8 T Hio-g ‘9l g

(L +T 1 Q

a
10 F10-10" *40
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¢; = Z[(l - p,) “ij € - aij ej] Qj + Z[(l -0 H T - 61j Tj]Ej

J J J

In cavity a:

a

2!

+

+

b

2
[@ = el + @ - py) Typ 6By 1o Hg g0 Boq ~ Y
(@ -0)) 5710 € Hy10 Bio-s s
QL -p1) ¢4 T10 G B30 Bi0-6 %
A -p,) {(c, B +e. H )+ 2 GH WP (e, H

1 g g * €9 B9 10 € B30 H0-10 ‘8 Pi0-8

+ H10-9E9)} 98
b a
@ -0y) €1g B _1oll + 1,56 Hy 100+ 75 B 901 95
(@ - 09) T9 Ty9 € By 99 Hi0-11 Erov
y k % * % % 2
(8+9) (8+9)

(1 -p)e. H . +e¢ 12 GH, .. H 5 .]Q

g)ley Hgy * €1 Ty G Hg_30 Hyo-10 Hro-1! %

(1 - pg) €5 Tyg G Hg 19 Hig 5 9

(1 - pg) €¢ T10 G Hg 10 Hio_6 ‘%

2 b
legl@ - pg) Hg g = 11 + (1 - 0g) Ty G Hy 1 By g9 (Hjg.g €3
+Hp g €g) + (- gy eg Hy o} 2
(L-p) e H (1+71.. GH A+t H. _)lQ
= Pg) €10 Hg 10 10 ¢ B0-10 10 H0-107! %0

(1= 0g) Ty T3 € Hg 10 Hy0-11 Epov
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b

2
dg = (1 = pg) ¢ [Hy | + T35 G Hy 14 Hig 9By 180

1

+ (1 - pg) €5 Ty G Hy 15 By 5 &g

Q

+ (1= pg) € Ty G Hy 14 Hyg_g S

2 b
+{@ - pg) €g By g+ ¢l = pg) By g = 11 + (1 = pg) T/ G Hy 1o Hg 19

(Hyo-g ‘g T H0-9 ENON

b a
+ (1 - pg) €59 Hy 10l + 155 6 Hig 39 1+ 799 Hg 1901 9y
+ (L - pg) Tyg Tyy G Hy 10 By 49 Epgy
In Cavity b:

o5 = (L = pg) €5 T19 G Hy 39 Hig 1 &

2 a
+eg (0@ - pg) By 5 =11+ (1= pg) Ty GHy 1 Hyg g Hig 0 8

5
F (- pg) eglB_ + 15, C 1 a
5) €glls g Hy 30 B1o-6 M10-10
+ (L -pg) Ty GHy g (g Hig g+ g By g) O
a b
+ (- 0g) g By gl +Tyg 6 Hyg g0 (1 * Ty Hiog0)] 0
a
+ @ - o) T10 11 ¢ H5-10 ®10-10 F10-11 Erov
¢b=e(l )T H Q
6= €1 10 € Hs_10 Hio-1
+ (1 -o0,) ¢ [H +72 GH H u? 1Q
6) ‘6l-5 ¥ T10 € Hg_10 Hy0-5 H10-10! ¥s

2 a
+ el = pg) Bo g = 11+ (1 = pg) Typ O He_ 9 By 5 Big_g0} &

+ Q- 0g) Tg G H 1y (g Hig g+ eg B o) G
. a b
+ (1= pg) €19 Hg_ 1o [L+ T g Gl g T+T4 B 1090] &g

2 a
(1 -0¢) 90 T11 € Hs_30 Hyp-10 Fro-11 Erov

+
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b b

o

} o

b

5

6

410 = €1 T Gl = pyg) Hig g0 - M Hjp 3 &
‘ 2 a
+eg Hg o (@ -0,4) + 1 6lA - pp0) H10 10 " M Hoo10
2 b a
+eg B o ((1-p0) + 15 GIQA = pyg) Bg 15 - 11 Hig g
+ Tyg 6L = ppq) H10 10 " 11 (g Hjg g +¢g H o) &
a
+ ol - p0) H10 po = M AL+ T GIHT) o+ T Bl o By
2 b a
+ 7o T1p 6 [ = ppq) #10—10 - 1 B0 Y0-11 Erov
A __Moa s, _fib b
10 filter AlO(a+b) 10 10 (a+b) 10
Cavity C:
c - - -
o= ¢ (@ -p) B, -11 0 +A=-p)) e, B, 0
M U LA
(o]
*A -y e By 8y
(o4
b= @ =0 ¢ By G+ Qme) 8,8
+¢,[Q - 04) H_,-18,
where ¢ and p are € and pc.
Cavity d:
63 = e [Q-p)H . -110 + @ -p.) e H .9
2 = € 2) Hyly 2 2) €3 Hy g3 85
A=) e Byl
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d
b3 = (L= p3) ¢y By 5 8y + 5000 - p3) Hy 5 = 1] &4
*@-eg) ¢y Hy
03 = (1 -p) e, By, Q +(1L=-p) ¢, B .0
7 7 €2 B2ty 70 ¢3 B3 s
+el(-p) By, - 11
Cavity e:

o, = el[(l - pl) Hl-l - 1] Q] + (1 - pl) €, H1—2 QZ

* @ -py) ey Hy 58

5 = (1= py) e Hy @) + e, [0 -p)) By, -11 ¢,
@ -py) ey Hy 58

95 = (L= pg) ¢ Hy y @ + (1 =pg) ¢y By,

+ eyl - py) Hy o -1] 0

Cavity f:
f .

b3 = €30 = py) Hy 3 = 11 85+ A -py) ¢; By 5 8y
£

b, = (1= p)) €5 Hy 3 Q3 + ;[0 -0y Hy 5 =118,

The energy balance equation (1) is written for each node as the

followings:
-T

c ,C e ,e a ,a -
+ AT ¢ + A, b, + AT 6T + Q. }
1 1-2 171 1" 171 Hl
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. T.~T T, -T T.-T T.-T .
T2=§i—{:‘{2+;2+R2+;2+A§¢§+Q2}
2 Ry 2-4 2-3 2-7
) T.-T
_1l 273 e e d d £ f
Ty =y (=t 85 03+ A3 03+ 43 63+ Q)
3 Ry 3
T.,-T T -T T.,-T .
R e i et e RN
4 R4-2 4-5 4-
1 T T Ts T Ts o 5 op
Ts=w g *t®_*tX + Ag g}
5 Rsy 5-6 5-12
) T_-T
1 55T b b
T, == { + A ¢/}
6 "M, "R, 6%
T =T i
1 (2 a4, f o f
T, = Dt Ay 6+ A 6, + Q)
7 Ry .
T -T. T.-T. T,.-T
Ty =i po b ot g+ Ay 0 + Ay 03]
g Rgg 8-5 8-10
T, -T T.,-T
-1 %Mo 8o e a b b
Tio “m o 1 + + Al 930 * Ayg 410}

10 YMo-4  Rio-8

Where M = Vy C. In addition there are three more equations which were
derived from the electronics model. These equations are alrveady discussed
in Section 1I.

In the above equations, the ¢s can be splitted as

9, = (6 + (0

shortwave longwave’

Substituting ¢k into the above equations and rearranging the constants

yeild a following type of equation
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where

1

fis M Re-j

ij = constants including all radiative parameters

B =;A1<..

Qk M

Bk = constants related with the irradiance at FOV limiter of
radiometers.

The above constants are described in the following pages.

g =~ Mlél_z SR B B Mlél_z
f21 " M;Rz-l o 2T ﬁZ (Rzil ' Rzia : R2i3 TR
A3 = M2R2_3 S MZ;Z_A ’ 'A2-7 - M2;2_7
thyp = M3;3_2 v B33 M3;3_2
f-2 M4§4-2 B 7T %Z (Raiz ’ R4i5 : Rais)
Ayes = Mata_s o Ms T MR
f5-4 MS;S-A o BT %; (R5f4 ' Rsis ' Rsilz)
As_6 = M5§5_6 s Msis_lz
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{A s A = -
6-5 = MR 6-6 MR,
1
{A = . A = -
7.2 T MR 7-7 R
1 1,1 1 1
A = , A = AL = -2 + + )
8-4 = MR 8-5 = MR _ 8-5 T WS T T
A
8-10 8 8-10
1 1 1, 1 1
{a L A - —2t A - - ( +
10-4  MaRi64 10-8  MjoRy6g 10-10 M0 *0-4  Ri0-8
a a a a b a
D11 M {al €J0Q - p]) B, + (0 = 0)) T G Hy 5 Hig 10 Bgy = 1]
[od Cc e e
+ Al el[(l ) Hl 1 - 1] + Al el[(l ) Hl 1 - 1]}
_g_ Cc - Cc C C e - e e e
Pr-2 = M a] @ -pp) g By + 45 @ -pp) ¢y By )
_o_ e
D)3 = M AT (L= o]) €5 H 4
p. . =2 (A% - ) 2 cH: . .}
1-5 T A 5 T10 € H1-10 Hi0-5
= 0 \C
e T A (- op) €, Hy,
_ g ,a __a, a a b
D16 = M, &) M -p ) ¢ Tyg G By 1 Byg g
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_o_,a _ a a _a a . a 2 a b
D, ., =y— A (1 ) {(eg By g+ eg H o) + 139 GH B9

D10 T %I'Ai €30 Bi-10lt + Ty © Ho_10@ *+ Ty0 Boog0))

B = 314: Ai'(l‘ - "i) T10 11 © Héll—lo Hlio-u

Dy, = %‘2‘“‘(2: (1 - pp) €] Hy ) + 47 (1= py) €7 Hyy!

Py-2 = ﬁ_z (a0 - 03) Hy p — 11 €5 + Ay €5 1@ = 0p) Hyy = 1]
+ A, e;[(l ) H2 , - 111

Doz~ g[—z (05 -9y €5 Hy o+ 85 (- 03) e Hy )

Py = %; (a; @ -0 e, By )

Po7 T ?Tz By (- 0y €7 Hy

D31 = %3' A§ @ - oy €] My

D3;2 - ;_3 {Ag a- Dg) G‘zi Hg-z + A; ( ";) Eg Hg-z}

Dy o = %; {A3 3[(1 - p3) H3 5 - 11 + A7« sLa - p3) Hy_5 - 1]
+al fra - pgj i - 10
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D37 =§_3{ g - "3) Hy 7+A§ @ 'pg) ‘g H§-7}

br -5 - T

Dje = %: B, A0 € By,

D4-4=§—4' Ay L -0 |, - 1]

D5y = ?4_5 {A: - °2) €1 10 c Ht:;-10 Ho)

D, . = -;—5- (AL - o) By - 11+ (1 - 39 Tio G Hy 1o Hogs Hopiol}
D56 = ;_5 B (- pg) €olHy ¢ + 1o © Hy_1o Hro s E'1g 1]

Ds_g = g—s Al; - 915:) T10 © Fll;--10 (g Hig g+ €g Higo)

Ps_10 = ?4_5 A - p3) €10 Hy_goll + Tyo € Hyg o1 + 1y H:o-lo)]

By = I%I; Ay (L= p0) Ty t]) G H 1o o o Hyo )y + By )

Dg-1 = :4_6 AZ. g a g) T0 © He 10 Hio-1

Dg-5 = %g Ay (- pg) cglHy o + Tio ¢ He_jo Hlg_s Hp o]

Dg_g = %g oL - o) By =11+ (L= pg) T3, 6 By S Ho o) )
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b b b (aa a)

ag
Dg_g = M, Ay (L= pg) Ty G By 1 (g Hyg g *¢gHigg
_o__b_bbb a . b
De 10 =3 2 (L = Pg) €10 Ho-10! + T1o € Hioo10 @ = Tyo Bro-10"!

_1 b _ b 2 b a
P =M, % 1 - o) T [ 19 + T30 € H_19 Fio-10 Fro-10’
_o ,d d d
D, o = T A, Q- p7) €9 9o
o g4 d d.d £ . £ f_f
D, 37 T {5 (1= p3) €5 Hy 5+ A, (L= pp) ¢ Hy )
e ) da £ £ £ f
P71 T m (a7 €S0 - oD Hy ;- 11 + A7 €51 - pp) By, - 11)
Aa
-0 8 _ ayr.a.a a 2 a b a
D1 =y La — @ pg)leq Hg_y *+ €1 T30 € Bg_10 Fr0-10 H10-1]
(849)
Aa
9 a a ..a 2 a b a
3 (1 - og) € [Hy | + 110 GHy g Hg 0 o1} Agg
(849)

_J_gr,a _ a, b a b a ,,_ a, b a b
Dg_5 = Mg {ag (1 - pg) €5 115 G Hy 5 Hig5 + 4 (1= pg) €5 75 G Hy 9 B o5}
_0_ a _ a b a b a _a b a b
Dg_g = M {Ag - pg) ¢ 1.q G Hy 1q Hig o+ Ag (1 =0g) €0 TigHg g B 9-6)
o a, a a a a 2 a b a

p =9 - B -1) + -
-8 ~ Mg {agleg (L = pg) Hy o = 1) + (1 = pg) Ty GHg 1 Mg 15 (g g
a a a a aa a
+ H +
g+ Hloog ) + (1= g g Hy o) + AL = pg) g Hg g+ g
- 2 b i a
- - + -
((1- pg) Hy g = 1) + (1 - pg) 175 CHy 15 Hig g g ¢g + H Hiyg o)1)
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_o b a
Dg_10 = M {Ag (@ - pg) €Jq Hy 1ol + 15 G Hy (o (1+ T 0 Hy 0]
+a, (-9 3 [1+71.GH A+t 5 .
9 10 Ho_10 10 ¢ H0-10 10 H0-10
1 a a b a a b
Bg = Eg'{Ae (1 - 0g) Tyg Tyy G Hg g Hig gy * Ay (L= pg) Ty Ty G g0 Bygogy!
D =9 2 B[ - ) +1i 6@ - o) -1 B ]
10-1 " i Y0 ‘1 501 P10 10 10 10-10 10-10
b a b, b a
+ A € Tyo 61 = 0y0) Hyg 40 - 11 Byl
_ G ab _ b
Dyg-5 = M, {Aly €2 Ty GLQL = p30) Hig 1o = 1 Hjy o
b b b 2 a
t A €5 B sl - ppg) ¥ 1556 Q- p10) HlO 10 -1 Hggol}
_ _Ga a b b
D1o-6 ~ M, {ATy ¢¢ Tyo SLQ - p70) By 1o - L Hg ¢
b b.b b 2 b . b a
+A1g ‘6 Hyggl (X~ 0yg) + 790 €A = py1g) Hyg 15 = 1 Hyp ol
__c a ,aa a ,a _ a 2
Dio-8 = M, {alo(eq Hiog *+ ¢g Hig_g) [Q = p3)) + 17, 6(A = p]g) Hg 1o 1)
b b aa
B o-10] * %10 T10 6L1C - °10) H10 10 - 11 Higg * ¢g Hg o))
_ G a _a a - b a
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SCANNER MODEL

The scanner model was developed by the same methods which were used
for the non-scanner model development. The Equations (1) through (7) in
the Appendix C are used to generate the constants 6f the thermal model
Equation (24) in the Section 2.1.3.

To.define the coefficients in the themal model, the enclosure coupling
technique was used as another alternative approach. The following pages
contain those coefficiénts defined by using the enclosure coupling method.

The attached figure shows the scanner model which has node description
and enclosure descriptions. The enclosure has the number which is circled
around. The numbers describing enclosure surfaces are underlined. 1In the
illustration of the coefficients, the word that explains the procedure of

derivation was omitted because they were already shown in Appendix C.
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For the total channel, the filter glasses are removed, Accordingly,

the (Rl ) related with node number of filters have to set zero.

1-]

1
BQ = [09 o, 0, o, 0, 0, 0, _ﬁ_’
8

0, 0, 0, 0, 0, 0]

Scanner:

Let

i (Heyq)p = (gk—j By i)a

where subscript A denotes the enclosure A.

Then let
G o= [1-12, oy (H 017"
1 13 P13513p Pi3ms’r
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X, = Fl,lﬂl + Fl’ZQZ + F1’4Q4 + Fl,SQS + F1,6Q6 + F1’898 + Fl,gﬂg

+ Pt
where
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() = 1 V26 * Auan T16 P14 Brame)s Vs els it
\
| Dif,7 =0
| - (9 - i} _
| Dis,8 = (Mla){Al4A Ty [0y ) W), — 11Uy g+ Ayp Ty [A0g,)
Wa)p ~ 1 Uaus + Aan T16@P14) Brameds Us,els,L

D149 = (§§Z°{A14A Ty L@ )Wy g0y ~ 11T g A14B(1'914)B[‘9(H14§9)B
F 1 )s Up o * TieWiumeds Us,0) T Au4m T4 U2,9%s,L
14,10 T ﬁiig){A14A(l'°14)[‘10(H14j10)A + 1, B4 U100 7 Araa T1s V1,10
+ 8@y U, )5 Y9 10+ T16Msmie)s U300 T s T14 Uy,10%s,1
D411 " ﬁifz){AlaA Ty [ @m0 )y yig)y = 11 Vg gy * Ay ooy Oleq (g
| + T14(H14m14)13 Uy 31+ T16®rmeds Us,11) T Aues T U2,100s,1
Dis,12 ™ (E%Z){AlaA(l'pi4)[‘12(H14j12)A + T s1a0a V112t T Area Tas B2
* Ayl By )y * T B ma’s Y2,12 * T16Mamie) U3f12]
- A1 14 U2,12}S,L
Dr4,13 T (E%Z){A14A Ty Lo ) (i) = 11 Up g3 % Aoy 01 (B )y
Uy 13~ Tre®rame’s V3,130 ~ A1as T1a U2,190s,1
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14,14 = (ﬁfz°{ Al ) By )y = 1y 1y, Uy gy) + A -0,)
Lo Byumads * T14 Pramiads Y2,14 + T16 Pramie’s Us,147 7 Auan
g + T4 Y5 000)5,L
(B, = G[A 1=p) T (B ) U ]
Vs, 7 G B0 T13M19%p Us,150s,1
(B))g 1 = (ﬁ;°[Azn(l‘pz) T13(Hy593)p Ug 15 * A 1me) T sy 9)8 Uy 15

+ 1. _(H )., U 11

17 2ml7°F 6,15 °S,L

(®B)s,1, G")[A Q-p Mt g By 1305 Uy 05+ Ty M908 U 15t 5L

(B 1, ('"Q[A (-pg) {1y g ) Uy gg + T Hs0) Us 15ty

(Bglg 1 = ('go[A (A-pgd Ty Hos167c Y415 ¥ T17Weq17)c US,lS}]S,L

(B,) (H

1
8,1 = G lAg(Loog)

8

16Hg3160c Uy, 15 * T17(g5170¢ Us 15t s 1

(Bgdg 1, (“—Q[A 1P (T, By 8 Vs 15 + T16Mome’s Y3, 15

My
(16 Ma5167c Ys15 * T17M95170¢ Us 150 5L
1
®Brods,L = (Mlo)[Alo(l'plo){Tla(Hloj14)A Up 15 * Tis(igins2atls, L
I -
Bipg,p = G, Qe Dy, 8 Y915 * T16Prime’s Us, 150 0s,L

11

). U } + Agc(l—pg)
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(95,1

(

B

(B

13°s,L

= G Ay iy (e ) (Hygiy4)p -

147s,L

(ﬁ——

1
12)[A12A(l'°12>{T14(lejla)A Upgs + Tis(Hipgys)at + A1 (t=ryp)

( ) }]

(t, Homas V2,15 ¥ T16Mtome’s U3, 157 's,L

1

1}u )

> 8,15 * A13r 13l (1703

(Hyy19)p = 13Uy g+ Apgp(opy o) Ty, (0 ) Ug g5l g

1}U

1
(Mlh)[A14A T Lm0 ) Wy iy )y = 10y 5+ A, (m00,) Tys

(Bypyp50a * Arap T1al@P1g) Byunn)p = 10 05 + A14p T1g

]

(-py,) 1678 Us,150s,L

For the total channel,

i‘s,L
T13 7 T14
13 7 ‘14

Scanner Model Equations

Total Channel

T,

4

= +D,.T +B..Q+ BE+b+
i AijTj Dij 3 QiQ iE b e
SW/LW Channels
. " .
- oD 1™ +B. .Q+ + (B).E +b+
Ty = AgyTy 45T * Bgal (B)gEg + (By) B +D +e
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Scanner (using Enclosure Coupling Method)

(<o T <> T - B <> I <> I o |
S R A

where m

For each cavity (or enclosure in the scanner model)

1

E1

1 1
E = E2
1

Es

1

K
where E

m ™ M o
lU’\NJ-\NuNNNP—‘NJ

(]

w &

w

]
o] =1 o] <] o]
WL WLWHFE WLWLWLD LW W

2]

ro
4
E
4 4 5
= |E, E° =
4
Eq
4
E,
1
=By
2 2 2
= Eg s BEg = By
3 3 .3 3
B » Eg = B, By
4
i3
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Thus D matrix is formed by the above Es.
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| SOLAR MONITOR MODEL

As described in the non-scanner and scanner modeling efforts, the same
notations are used for constants and variables in developing the energy

balance equation of the solar monitor.

To avoid the burden to write the same equations as used in developing

the other models, the same variable name in the equation such as Rij is

| here simply used.

A general form of the equation for the solar monitor which is divided

into 19 nodes is presented here as

4

T = AT + DT +BQQ + BE + b.

Now the computational algorithm for the constants of the above equation
has been developed by using the enclosure coupling technique. It is avail-
able and can be used for all 8 non-scanner, scanner and solar monitor models.

The following constants, , represent the coefficients of themal

Ay

conduction terms in the energy balance equations.

App = - /R M)
A, = 0

Apy = L (RygMy)
Ay =0

Ayy = = L/ (RyMy)
Ayy = 1/ (Ry3M))
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1 2 3 4 5 6
C = lc €265,
sz €22 Ca3 Co4”
€31 C32 €33 C34
a1 C42 C43 Cyy
€11 €12 13 €14 G5
C21 €2 €23 G c 4 C25
€31 €33 €33 °34 €35
Ca1 Ca2 Cu3 44 Cus
C 1 %52 C53 Cs4 Css
€11 €12 €13 G4 G5 €6
€21 €52 €23 €54 Cas Cog
€3y caz C33 caa °35 C36
a1 €42 €43 C44 Cus Cue
€51 €52 Cs3 Cs4 Cs5 Csg
Ce1 Cs2 C63 64 Cos Cee
€11 €2 G5 €44
¢ sz ¢ cza
c3 c, c33 Cs,
Ca °42 C43 Caa
‘n 13
€21 €22 €23
C31 €33 C33
€11 %2 G5
Cyy €33 €33
€31 €3 °3{
-1
C=(I—pdE) EtT-
1~ 1~
¢ = A-¢€e]Q+[(Q -p-1D)(I -CD)" C~-T]FS

[(I -p=- tD)(I - CD)
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1/ (R, M)

1/ (R, M)

= 1/(R,_,qM,)

1/ (R, Mo)

1

-E—+ =)/

Rs,

1

R 5

56

1/(R56MS)

1/(R

L

Res

6516’

L

Re7

+ )/M6

1/ (Rg Me)
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. - FOV Limiter

SOLAR MONITOR MODEL

1. Active Cavity

2. Reference Cavity

3. Button, Duplex Cone
Cavities
Heat Sink

Aperture, Primary
Shield, Aperture
Body (Rear Barrel)
Body (Front Barrel)
Aperture, Secondary
(or FOV Limiter)
Motor Housing
Chopper Blade
Chopper Pendulum
Motor, Chopper

Front Top Housing Cover
Rear Top Housing Cover
Front Housing

Rear Housing

Holder, Heat Sink

Fictitious Surface
Temperature Probe

Total Incident Radiation
Irradiance in enclosure a
Irradiance in enclosure »
Rate of Incident Radiation
From a Neighboring Surface
Cavities Within The
Sensor, i.e., Enclosures
or Spaces Between Sensor
Nodes
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Ay, = 1/ (Rg M)
Byg = L/ (R M)
1 1

A, = =( + ) /M

77 T WS W
Asg = 1/ (R; M)
Agy = 1/ (Rg M)
Agg = 1(R R1 + = 1 )/M8

89 Rg-10

Agg = 1/(RgMg)
Ag 10 = 1/ (Rg_;oMg)
Ag_g = 1/ (Rg_gMy)
A = -

9-9 9-8M9
Ao-g = 1/ (Ryg_gho)
Ao-10 = T YV ®Rpg gMig) — VR goMg) - VR
A0-12 = 10-12"10

Ajo-13 1 1/ ®Ryo_14M0)

Aj1a12 T 11-12"11)

Ay T T YRy oMy

10—13M10

)



Aaenn
Ajo-12

A1o-13

A13-12
A13-13

A13-10

Aj4-14
A4-15
A4-17
A1s-15

Ai5-16

Ars_14

Aj6-15
A 6-16

Al6-19

1/(R

12—11M12)

-(1/R + 1/R )/M12

12-11 12-13

1/ (R )

12—11M12

1/ (R4 _15Mp5)

"Rz g9 * HR13500 M

1/(Ry5_90Mp3)

+ 1/R

-(1/R 14-17

14-15 )My,

1/ (R )

14-15"14

1/(R )

14-17"114

- 1/(R ) - 1/(R )

15-16715 15-14%15

1/ (R )

15-16715

1/ (R

15-14M15)

/(R )

16-15"16

-(1/Rr + 1/R )/Ml

16-15 16-19 6

1/ (R )

16-19Ml6
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Age1s T YRy

Apyoaz = ARy, R 18Iy

Ajy_18 = Y Rypoigty)

Ajgoyy = 1/ Rpg M)

Argo1g = "AW/Ryg g7 + /Ry 19 Mg

Ajg19 = 1/ (Rig_19Mg)

Apgoy = Ry M)

Arg-16 = /(o 160

Arg-18 = 1/ (Ryg_1g™g)

Arg_1g = ~(W/Rjg 4 + 1/Rg 16 + 1/Rg 180 Mg

For the radiative interaction term, considering the speculér reflection,
d s

p=p *0p 1)

e +p+1=1 (2)

d 4 d
= 90T T ABe T LB (3)

E =) E M? %)
J

6 = E =M (5)



o]
]

L (8, - o%E

=1 13 373

Equation (6) becomes

b =

Let
kji

nml

a - pk)Ek -
2[(1 - pk)ei
1

Y -
é[(l pk)Ti

I
0~

E

K-35 j-1

P
En-m m-£

I
g0~ G

D

-1

(ei Qi

+ T,E.)

11

(6)

)

(8)

(9)
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1 4 ~

lm]'t_-rTD ms T m
/!\ ':
| j//A ,
L |
1 | /’

From the above drawing, the enclosures, a, b and c, are found. For

each enclosure, the incoming radiance to a certain surface can be described

by Equation (8).
Choose the enclosure b and ¢ and couple them together, then one can
define the transmitted radiance through the filtering surface.

First,

Index
enclosure b - elements 6,7,8,9,11,20 i, i,k
enclosure ¢ - elements 1,5,20 £,m,n

From Equation (8)

where in this equation i, j and k are dummy index

or

€.0 E

O, H .. +
i7i kji

22
u
e =1
e [~

E. H
Ti%1 Tkji

For the enclosure c, Equation (8) becomes

~ A

N = (v
Eo = G € Poomedc ¥ 20 a0 )

H20m20 c

e

where £, m and n = 1, 5 and 20.
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Likewise, for the enclosure b,

~

(Z <1%M0517 * T20%20M205207p * T11F11 o051 (1)

where i and j = 6, 7, 8, 9, 11 and 20.

Combining (10) and (11) to obtain E,. and E_,, as a function of Ell’ we

20 20
have
B Y v
E20 Gl[(é Qetoome) e ¥ T20 Paomao? e (é €%1%051b
*+ 111 T20®0m20’ e M05117p E11! 12)

and
§20 =G [(A €% Hyoqi0n ¥ Téo(Hzojzo)b (% € ¢ H0me) ¢
+ T11(H20j11)1; Ejy] | | (13)
where
G =0~ Tgo(uzojzo)b (H?_omzo)c]_l

The radiation energy balances in the enclosures b and c are

¢k’b = g[(l Y Begi ™ O %

LA - ety By - 8] (Bypg or By Ly (14)
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26

and

Ty

+ %[(l - pn) TKHnmE -

Second,
enclosure d -

enclosure b -

From Equation (8)

Ell (L €1Q )

and

=1

= V - -
¢ - é[(l pn) eﬂHnmﬂ

elements 11,14,21

elements 6,7,8,9,11,20 |

i113i b ll

1 (% € o ime?a T T11®11m1102 B Y T

ensnﬂ] QK

T 6 ol ] E

Index

L,m,n

i,j,k

~

). E

(H bE20

(55117681 T T20®h1420

~

(H ) E

11m21’a

Substituting (12) into (16), Equation (16) becomes

B =

11 ¢

v 0

L i“iﬂllji)b +
1

2 G (W, .0
T20 "1'"11520%b

W50 T T

Substituting (18) into (17)

b - T
B 7 Gz[(é <o Boneda T

+ 719 Tog S Wy,

2
Too 61 Myy0110,

20m20

T2 "1

90 %1 115207 (% € 0%Hy0me)

)

(z 61 i 2031 b

2

G, (H ), (H ). (H

11j20°b *20m20”c

To1 B 1m21?aE "1 B1m11a

\y
(115500 (ﬁ % Boome)c

(H ), (H

20m207 ¢

b ) (Z e Q.H
i

11320

ii 20ji)b]

(15)

(16)

(17)

),1 E (18)

2-j11’p" "11

(4 € )

1 i lljl b

(19)



where

2 -1
Gy = [1 - 1y; S;(Hyymy),]
S. = (H,....). + 712 G (H . .. (H,. ) (H . )
1 115117 20 "1°711320°b 20m207 ¢ 20311°b

On the other hand, substitution (17) into (18)

A

Ep =6 [(EG Q89510 ¥ T G ®

T
11520’b (é €% Hoome)e
Tz G, (H ) (z
20 "1°711320°b 20m20 1 i 2031 b

T 1(% <o% Hi1meda T 111721 51 Byimor)a B (20)

For the enclosure a: mnodes: 11,14,21

K/”O for open position

11m11’a ~ €110 A -0

%11 . (@ -ppy) 147 14 1mada s

~

+ {1 = pyg) Ty (Hyyn9), B+ LA - 0y) ;;{(H11m11>a = T111Epy

0 for closed position

0 for open position

). ., +[Q -

a 11 )

P14 614 By 4miada ~ €14d @

drp] = Q=) A My 14

~

)

+ (A=) Ty WByg)s B P Qo) Ty (o), E
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For the enclosure b: nodes: 6,7,8,9,11,20

Y|, [ - pg) egHgiedy, = €] 8o + (1= pg) €, (Hg 00, &y
jﬁo for open position
+ (- pg) €g(lgigdy Qg+ (= pp) €qUe o)y Qg+ (1= 00) £y (Hesp)y Oy
{70 for closed position -
+ (1 - pg) £y (Hesqdy By + Q= 0g) Tho(eio0)y Eyp
*7], T (1 - py) eg(ye)y 0 +IA =) €, (Hy )y = ¢yl &y
40 for open position
+ (1 - p,) eg(B o)y Qg + (L= p) eq(Hyg), Qg + (L= 07) £y (Hygp9)y By
+ad- p7)¢{ll(H7jll)b Ejp + (- py) TyoHsu00)y By
0 for closed position
|
|
|
| ¢8}b = (1 - 0g) eg(Hge)y Q¢ + (A - pg) ¢ (g p)y Qg + 1A - Pg) €g

(Hgsg)y, = €gl U

0 for open position

+ (L - pg) ¢qlHg gl Qg + (1= pg) £y (Hgyyp)y Oy

+ @ - pg) fll(Hsjll)b Epp F (= 0g) TyoWyya0)y Eag

v
0 for closed position
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b9 . @ = pg) eglgsg)y, S + (1= pg) €5 (Hy p)y 2+ (L - pg) eg(ly gy Qg
/ﬂO for open position
+ [Q = pg) gy g)y — €gl 8y + (1 = pg) £, (Hgyyp)y 0y
@ mpg) £y (Hggqp)y By - py) Tya(Hgio0)y, By
0 for closed position
¢11|b = @ -ppg) gy g)y, U+ (L mpg) €g (Bypg)y 0y + (L= 0yy) €
(B, 487y g
A - pgy) g9y R + [A - pll)“?{l(ﬂlljll)b Tl 9y
0 for open position
L= ogy) T (W45907 Bao ¥ LA my) Fr gy - Tpd By
0 for closed position
¢20{b = (L= 0p0) €gyni)y P + (1= 0y) €5 (Hy049)y &y
o Q;pen position
+ (A= pyg) €g(Hypig)y, g + (1= 0y0) €g(Hygig)y Qg + (1 = 0y0)7%y,
(041170 12
A m0,0) T Wyp510)p Brn T LA = 0p0) T (hni00)p ~ Tao! By
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Enclosure c: Nodes: 1,5,20

¢, | () - el O + (L= pp) (O 0

[Q - pp) ey (Hyg0)e j5’c
lc
(@ = 01) TyoHy500)c By
¢ o (1 - pg) € (Hg) 0y + [ = pg) eg(Hg o) = gl Qg

~

(@ - p5) Tya(Hs500)c By

+

¢2o|c = (@ - 0yg) €3 (Hyg50) O + (= py0) €5CHygps), U5

~

]E

+ [ = py0) TyoMyp5907 = To0! Eop

For the enclosure d: Nodes: 1i,j,k =1,3,4,5

¢l|d = [(A-py) € (B )y =61 0 + L -p) ¢ (H i) g O
+ @1 - o)) 64(H1j4)d g, + @ - pl) es(Hijs)d 2

¢3ld = (1 -pg) €y (Hy0), 0 + [ = 0g) e3(Hyip)y = 51 94
+ (1 - 03) 64(H3J.4)d Q, + a - p3) 63(H3j5)d Q4

¢41d = (1= p) (), 0+ (=) €5, 3)

+ L = p) W)y =61+ (- o) €5l 0), O
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b5 £ A-pg) ¢ (Hyyp) g @ + (-pg) €q (Hy a), Oy

+ A-og) e (Hgy)y & +A-pg) €5 (Hy o)y — €5l &g

For the enclosure e: Nodes: 4,16,18,19
= - - - [
ba| 7 LAT0Y) ¢y (ygde = o1 8+ (o) ¢y (Bugpede Mg

+ (A-p,) €15 (y18)e g * (1-p,) €19 (Hyy19)e g

¢16{e = pyg) € (ygia)e O + 1U=01e) €16 Higgi6)e ™ €16 Y6

+ A=pyg) €15 Higi18)e g * U7P16) €19 (ig31970 g

o8] = (mpyg) ¢, (Hygy), @ + (Impyg) ) (Higiqg), B¢

Q

* [Ampopg) €15 (igg1g)e = 18] g + (1mp1g) €19 (Higg19)e 19

(1=p19) €; (Bigg)e & + Am0yg) €10 (Higiig), g
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The following are the constants for the radiation transfer terms in

the energy balance equation.
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